Internal inductance: Difference between revisions

no edit summary
No edit summary
No edit summary
Line 7: Line 7:
It can be shown that<ref>P.M. Bellan, ''Fundamentals of Plasma Physics'', Cambridge University Press (2006) ISBN 0521821169</ref><ref>[[:Wikipedia:Inductance]]</ref>
It can be shown that<ref>P.M. Bellan, ''Fundamentals of Plasma Physics'', Cambridge University Press (2006) ISBN 0521821169</ref><ref>[[:Wikipedia:Inductance]]</ref>
:<math>W = \frac12 L I^2</math>
:<math>W = \frac12 L I^2</math>
The internal inductance is defined as the part of the inductance obtained by integrating over the plasma volume ''P'' <ref>J.P. Freidberg, ''Plasma physics and fusion energy'', Cambridge University Press (2007) ISBN 0521851076</ref>:
The internal inductance is defined as the part of the inductance obtained by integrating over the plasma volume ''P'' <ref name="Freidberg">J.P. Freidberg, ''Plasma physics and fusion energy'', Cambridge University Press (2007) ISBN 0521851076</ref>:
:<math>\frac12 L_i I^2 = \int_P{\frac{B^2}{2\mu_0} d\vec r}</math>
:<math>\frac12 L_i I^2 = \int_P{\frac{B^2}{2\mu_0} d\vec r}</math>
Its complement is the external inductance (''L = L<sub>i</sub> + L<sub>e</sub>'').
Its complement is the external inductance (''L = L<sub>i</sub> + L<sub>e</sub>'').


In a [[tokamak]], the field produced by the plasma current is the ''poloidal'' magnetic field ''B<sub>&theta;<sub>'', so only this field component enters the definition.
In a [[tokamak]], the field produced by the plasma current is the ''poloidal'' magnetic field ''B<sub>&theta;<sub>'', so only this field component enters the definition.
In this context, it is common to use the ''normalized'' internal inductance per unit length, defined as
In this context, it is common to use the ''normalized'' internal inductance<ref>K. Miyamoto, ''Plasma Physics and Controlled Nuclear Fusion'', Springer-Verlag (2005) ISBN 3540242171</ref>
:<math>l_i = \frac{L_i}{2\pi R_0}\frac{4\pi}{\mu_0} = \frac{2L_i}{\mu_0R_0}</math>
:<math>l_i = \frac{\int_P{B_\theta^2 d\vec r}}{\pi a^2 B_\theta^2(a)} </math>
and similar for the external inductance.
(for circular cross section plasmas with [[Toroidal coordinates|minor radius]] ''a'').
 
Alternatively, sometimes the internal inductance per unit length is used, defined as<ref name="Freidberg"/>
:<math>l_i' = \frac{L_i}{2\pi R_0}\frac{4\pi}{\mu_0} = \frac{2L_i}{\mu_0R_0}</math>
where ''R<sub>0</sub>'' is the [[Toroidal coordinates|major radius]], and similar for the external inductance.
This differs from the preceding definition according to <math>l_i' = l_i/(2\pi R_0)</math>.
 
The value of the normalized internal inductance depends on the current density profile in the toroidal plasma.
The value of the normalized internal inductance depends on the current density profile in the toroidal plasma.


== References ==
== References ==
<references />
<references />