Boozer coordinates: Difference between revisions

m
Line 10: Line 10:
  \mathbf{B}\cdot\nabla\tilde\chi = B^2  - \frac{1}{4\pi^2\sqrt{g}}\left(I_{tor}\Psi_{pol}' + I_{pol}^d\Psi_{tor}' \right)~,
  \mathbf{B}\cdot\nabla\tilde\chi = B^2  - \frac{1}{4\pi^2\sqrt{g}}\left(I_{tor}\Psi_{pol}' + I_{pol}^d\Psi_{tor}' \right)~,
</math>
</math>
where we note that the term in brackets is a flux function. Taking the [[Flux coordinates#flux surface average|flux surface average]] <math>\langle\cdot\rangle</math> of this equation we find <math>(I_{tor}\Psi_{pol}' + I_{pol}^d\Psi_{tor}') = 4\pi^2\langle B^2\rangle/\langle(\sqrt{g})^{-1}\rangle = \langle B^2\rangle V' </math>, so that we have
where we note that the term in brackets is a flux function. Taking the [[Flux coordinates#Flux Surface Average|flux surface average]] <math>\langle\cdot\rangle</math> of this equation we find <math>(I_{tor}\Psi_{pol}' + I_{pol}^d\Psi_{tor}') = 4\pi^2\langle B^2\rangle/\langle(\sqrt{g})^{-1}\rangle = \langle B^2\rangle V' </math>, so that we have
:<math>
:<math>
  \mathbf{B}\cdot\nabla\tilde\chi = B^2  - \frac{1}{4\pi^2\sqrt{g}}\langle B^2\rangle V' ~,
  \mathbf{B}\cdot\nabla\tilde\chi = B^2  - \frac{1}{4\pi^2\sqrt{g}}\langle B^2\rangle V' ~,
204

edits