Boozer coordinates: Difference between revisions

No edit summary
Line 25: Line 25:
\mathbf{B} =  -\tilde\eta\nabla\psi + \frac{I_{tor}}{2\pi}\nabla\theta + \frac{I_{pol}^d}{2\pi}\nabla\phi~.
\mathbf{B} =  -\tilde\eta\nabla\psi + \frac{I_{tor}}{2\pi}\nabla\theta + \frac{I_{pol}^d}{2\pi}\nabla\phi~.
</math>
</math>
It then follows that
:<math>
\nabla\psi\times\mathbf{B} =  \nabla\psi\times\nabla\left(\frac{I_{tor}}{2\pi}\theta + \frac{I_{pol}^d}{2\pi}\phi\right)~,
</math>
and then the 'diamagnetic' lines are straight in Boozer coordinates and given by <math>{I_{tor}}\theta + {I_{pol}^d}\phi = \mathrm{const.}</math>.
It is also useful to know the expression of the following object in Boozer coordinates
:<math>
\frac{\nabla V\times\mathbf{B}}{B^2} = -\frac{2\pi I_{pol}^d}{\langle B^2\rangle}\mathbf{e}_\theta + \frac{2\pi I_{tor}}{\langle B^2\rangle}~,\mathbf{e}_\phi
</math>.
Anonymous user