Flux coordinates: Difference between revisions

Line 261: Line 261:
  2\pi\mathbf{B}\cdot\nabla G = \frac{1}{\sqrt{g_F}} - \frac{1}{\sqrt{g_f}}~.
  2\pi\mathbf{B}\cdot\nabla G = \frac{1}{\sqrt{g_F}} - \frac{1}{\sqrt{g_f}}~.
</math>
</math>
The LHS of this equation has a particularly simple form when one uses a magnetic coordinate system. For instance, if we write \mathbf{B} in terms of the original magnetic coordinate system we get
The LHS of this equation has a particularly simple form when one uses a magnetic coordinate system. For instance, if we write <math>\mathbf{B}</math> in terms of the original magnetic coordinate system we get
:<math>
:<math>
  (\Psi_{pol}'\partial_{\theta_f} + \Psi_{tor}'\partial_{\phi_f}) G = \frac{\sqrt{g_f}}{\sqrt{g_F}} - 1~.
  (\Psi_{pol}'\partial_{\theta_f} + \Psi_{tor}'\partial_{\phi_f}) G = \frac{\sqrt{g_f}}{\sqrt{g_F}} - 1~.
204

edits