EUTERPE: Difference between revisions

56 bytes removed ,  4 May 2010
m
no edit summary
No edit summary
mNo edit summary
Line 2: Line 2:
<ref>[http://pop.aip.org/phpaen/v8/i7/p3321_s1 G. Jost, T. M. Tran, W. Cooper, and K. Appert. Phys. Plasmas '''8''': 3321 (2001)]</ref>
<ref>[http://pop.aip.org/phpaen/v8/i7/p3321_s1 G. Jost, T. M. Tran, W. Cooper, and K. Appert. Phys. Plasmas '''8''': 3321 (2001)]</ref>
<ref>[http://pop.aip.org/phpaen/v11/i6/p3196_s1 V. Kornilov, R. Kleiber, R. Hatzky, L. Villard, and G. Jost. Phys. Plasmas '''11''': 3196 (2004)]</ref>
<ref>[http://pop.aip.org/phpaen/v11/i6/p3196_s1 V. Kornilov, R. Kleiber, R. Hatzky, L. Villard, and G. Jost. Phys. Plasmas '''11''': 3196 (2004)]</ref>
<ref>[http://iopscience.iop.org/0029-5515/45/4/003 V. Kornilov, R. Kleiber, and R. Hatzky, Nucl. Fusion '''45''': 238 (2005)]</ref><ref>[http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=APCPCS000871000001000136000001 R. KleiberGlobal linear gyrokinetic simulations for stellarator and
<ref>[http://iopscience.iop.org/0029-5515/45/4/003 V. Kornilov, R. Kleiber, and R. Hatzky, Nucl. Fusion '''45''': 238 (2005)]</ref>
axisymmetric equilibria. Joint Varenna-Lausanne International Workshop.
<ref>[http://link.aip.org/link/?APCPCS/871/136/1 R. Kleiber, ''Global linear gyrokinetic simulations for stellarator and axisymmetric equilibria'', Joint Varenna-Lausanne International Workshop. AIP Conference Proceedings, 871, p. 136, 2006]</ref>.  
AIP Conference Proceedings, 871, p. 136, 2006]</ref>. Afterwards, the code has been  heavily optimized and improved. The perturbation to the magnetic field, a third species (in adition to electrons and ions) and the non-linear dynamics have been included.  
Afterwards, the code has been  heavily optimized and improved. The perturbation to the magnetic field, a third species (in adition to electrons and ions) and the non-linear dynamics have been included.  


The EUTERPE code solves the gyroaveraged Vlasov equation for the distribution function of ions
The EUTERPE code solves the gyroaveraged Vlasov equation for the distribution function of ions


<math>
:<math>
\frac{\partial f}{\partial t} + \frac{\rm{d}v_{||}}{\rm{d}t} \frac{\partial f}{\partial v_{||}} + \frac{\rm{d}\vec{R}}{\rm{d}t} \frac{\partial f}{\partial \vec{R}} = 0
\frac{\partial f}{\partial t} + \frac{\rm{d}v_{||}}{\rm{d}t} \frac{\partial f}{\partial v_{||}} + \frac{\rm{d}\vec{R}}{\rm{d}t} \frac{\partial f}{\partial \vec{R}} = 0
</math>
</math>
Line 14: Line 14:
The code is based on the particle-in-cell (PIC) scheme, where the distribution function is discretized using markers. The δf approximation  is  used,  so  that  the  distribution  function  is decomposed in an equilibrium part (Maxwellian) and a time-dependent perturbation.
The code is based on the particle-in-cell (PIC) scheme, where the distribution function is discretized using markers. The δf approximation  is  used,  so  that  the  distribution  function  is decomposed in an equilibrium part (Maxwellian) and a time-dependent perturbation.


<math>
:<math>
f(\vec R, v_{||}, \mu, t) =  f_{0}(\vec R, v_{||}, v_{\perp})+  \delta f(\vec R, v_{||}, \mu, t)
f(\vec R, v_{||}, \mu, t) =  f_{0}(\vec R, v_{||}, v_{\perp})+  \delta f(\vec R, v_{||}, \mu, t)
</math>
</math>
Line 20: Line 20:
Each marker along with its weight is evolved following the particle trayectories and contributes a part to the distribution function, so that
Each marker along with its weight is evolved following the particle trayectories and contributes a part to the distribution function, so that


<math>
:<math>
\delta f = \sum_{p=1} ^{N} w_p \delta ^{3}(\vec R - \vec R_p)\delta(v_{||} - v_{||p})\delta(\mu - \mu_p) /(2 \pi B),
\delta f = \sum_{p=1} ^{N} w_p \delta ^{3}(\vec R - \vec R_p)\delta(v_{||} - v_{||p})\delta(\mu - \mu_p) /(2 \pi B),
</math>
</math>