CUTIE: Difference between revisions

120 bytes added ,  4 December 2009
no edit summary
No edit summary
No edit summary
Line 1: Line 1:
CUTIE is a quasi-neutral two-fluid computer model for turbulence in a toroidal plasma.
CUTIE is a quasi-neutral two-fluid computer model for turbulence in a toroidal plasma.
<ref>[http://dx.doi.org/10.1088/0741-3335/42/12B/320 A. Thyagaraja, Plasma Phys. Control. Fusion '''42''' (2000) B255]</ref>
<ref>[http://dx.doi.org/10.1016/j.euromechflu.2003.10.009 A. Thyagaraja, P.J. Knight, and N. Loureiro, Eur. Journal of Mech. B/Fluids '''23''' (2004) 475]</ref>
<ref>[http://link.aps.org/doi/10.1103/PhysRevLett.94.035002 M.R. de Baar, A. Thyagaraja, G.M.D. Hogeweij, P.J. Knight, and E. Min, Phys. Rev. Lett. '''94''' (2005) 035002]</ref>
<ref name="cutie">[http://link.aip.org/link/?PHPAEN/12/090907/1 A. Thyagaraja, P.J. Knight, M.R. de Baar, G.M.D. Hogeweij, and E. Min,  Phys. Plasmas '''12''' (2005) 090907]</ref>
The large aspect ratio tokamak ordering is used (''R/a >> 1''), and ''B<sub>p</sub> << B<sub>tor</sub>, &beta; << 1''.
The large aspect ratio tokamak ordering is used (''R/a >> 1''), and ''B<sub>p</sub> << B<sub>tor</sub>, &beta; << 1''.
The plasma modelled consists of electrons and a single ion species.
The plasma modelled consists of electrons and a single ion species.
Line 9: Line 13:
the electrostatic potential (&Phi;) and the parallel vector potential (&Psi;).
the electrostatic potential (&Phi;) and the parallel vector potential (&Psi;).
The poloidal magnetic field (and consequently the safety factor, ''q'') evolves in time.
The poloidal magnetic field (and consequently the safety factor, ''q'') evolves in time.
[[File:CUTIE.jpg|265px|thumb|right|Density fluxtuations in a CUTIE simulation (from <ref name="cutie"/>)]]


The code solves the evolution on the meso-scale level (larger than the ion gyroradius), co-evolving the [[Flux surface|flux surface]] averaged quantities and the turbulence in a self-consistent manner;  
The code solves the evolution on the meso-scale level (larger than the ion gyroradius), co-evolving the [[Flux surface|flux surface]] averaged quantities and the turbulence in a self-consistent manner;  
Line 15: Line 20:
linear and non-linear shear Alfvén waves, slow magneto-acoustic modes, drift-tearing modes, ballooning modes (ideal and viscoresistive), and the fluid branch of the ion temperature gradient (ITG) instability.
linear and non-linear shear Alfvén waves, slow magneto-acoustic modes, drift-tearing modes, ballooning modes (ideal and viscoresistive), and the fluid branch of the ion temperature gradient (ITG) instability.
The code contains sufficient mechanisms for the generation of sheared flow by turbulence and produces a spontaneous confinement transition similar to the [[H-mode|L-H transition]] in experimental devices.
The code contains sufficient mechanisms for the generation of sheared flow by turbulence and produces a spontaneous confinement transition similar to the [[H-mode|L-H transition]] in experimental devices.
<ref>[http://dx.doi.org/10.1088/0741-3335/42/12B/320 A. Thyagaraja, Plasma Phys. Control. Fusion '''42''' (2000) B255]</ref>
<ref>[http://dx.doi.org/10.1016/j.euromechflu.2003.10.009 A. Thyagaraja, P.J. Knight, and N. Loureiro, Eur. Journal of Mech. B/Fluids '''23''' (2004) 475]</ref>
<ref>[http://link.aps.org/doi/10.1103/PhysRevLett.94.035002 M.R. de Baar, A. Thyagaraja, G.M.D. Hogeweij, P.J. Knight, and E. Min, Phys. Rev. Lett. '''94''' (2005) 035002]</ref>
<ref>[http://link.aip.org/link/?PHPAEN/12/090907/1 A. Thyagaraja, P.J. Knight, M.R. de Baar, G.M.D. Hogeweij, and E. Min,  Phys. Plasmas '''12''' (2005) 090907]</ref>


== Code history ==
== Code history ==