4,427
edits
(→ELMs) |
No edit summary |
||
Line 1: | Line 1: | ||
When a magnetically confined plasma is heated strongly, it may spontaneously transition from a low confinement (or L-mode) state to a high confinement (or H-mode) state. | When a magnetically confined plasma is heated strongly and a threshold heating power level is exceeded, it may spontaneously transition from a low confinement (or L-mode) state to a high confinement (or H-mode) state. | ||
<ref>[http://link.aps.org/doi/10.1103/PhysRevLett.53.1453 F. Wagner et al, ''Development of an Edge Transport Barrier at the H-Mode Transition of ASDEX'', Phys. Rev. Lett. '''53''' (1984) 1453 - 1456]</ref> | <ref>[http://link.aps.org/doi/10.1103/PhysRevLett.53.1453 F. Wagner et al, ''Development of an Edge Transport Barrier at the H-Mode Transition of ASDEX'', Phys. Rev. Lett. '''53''' (1984) 1453 - 1456]</ref> | ||
In the H-mode, the [[Energy confinement time|energy confinement time]] is significantly enhanced, i.e., typically by a factor of 2 or more. | In the H-mode, the [[Energy confinement time|energy confinement time]] is significantly enhanced, i.e., typically by a factor of 2 or more. | ||
Line 9: | Line 9: | ||
<ref>[http://dx.doi.org/10.1088/0741-3335/49/12B/S01 F. Wagner, ''A quarter-century of H-mode studies'', Plasma Phys. Control. Fusion '''49''' (2007) B1-B33]</ref> | <ref>[http://dx.doi.org/10.1088/0741-3335/49/12B/S01 F. Wagner, ''A quarter-century of H-mode studies'', Plasma Phys. Control. Fusion '''49''' (2007) B1-B33]</ref> | ||
The precise mechanism governing this phenomenon is the subject of ongoing studies. | The precise mechanism governing this phenomenon is the subject of ongoing studies. | ||
== ELMs == | == ELMs == |