Hamada coordinates

Revision as of 15:46, 24 August 2010 by Arturo (talk | contribs) (Created page with 'Hamada coordinates are a set of magnetic coordinates in which the equilibrium current density <math>\mathbf{j}</math> lines are straight…')
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Hamada coordinates are a set of magnetic coordinates in which the equilibrium current density lines are straight besides the those of magnetic field . The periodic part of the stream functions of both and are flux functions (that can be chosen to be zero without loss of generality).

Form of the Jacobian for Hamada coordinates

In this section, following D'haseleer et al we will translate the condition of straight current density lines into one for the Hamada coordinates Jacobian. For that we will make use of the equilibrium equation  , which written in a magnetic coordinate system reads

 

Taking the flux surface average   of this equation we find  , so that we have

 

In a coordinate system where   is straight   is a function of   only, and therefore LHS of this equation must be zero in such a system. It therefore follows that the Jacobian of the Hamada system must satisfy

 

where the last idenity follows from the properties of the flux surface average.