121
edits
Line 17: | Line 17: | ||
In the shot plotted in figure 1 the NPA was tuned to 200 eV in the lowest energy channel. As can be seen, the count rate in the lower energy channels (NPA 01 – NPA 06, 200 eV to 446 eV) dropped, as did the Halpha signal. In contrast, in the higher energy channels (NPA 07 – NPA 09, 540 eV to 826 eV) the count rate fell when the gyrotron was turned off. This can be a indication of the existence of suprathermal ions. The amount of suprathermal ions depends on the position of the plasma heating, so not all discharges presented the same behaviour. | In the shot plotted in figure 1 the NPA was tuned to 200 eV in the lowest energy channel. As can be seen, the count rate in the lower energy channels (NPA 01 – NPA 06, 200 eV to 446 eV) dropped, as did the Halpha signal. In contrast, in the higher energy channels (NPA 07 – NPA 09, 540 eV to 826 eV) the count rate fell when the gyrotron was turned off. This can be a indication of the existence of suprathermal ions. The amount of suprathermal ions depends on the position of the plasma heating, so not all discharges presented the same behaviour. | ||
[[File:NPA42626.png |1000px]] | [[File:NPA42626.png |1000px| Figure 1. Left up: heating scheme. Left down: Halpha and density. Right: NPA signals]] | ||
A possible explanation for the suprathermal ions is a parametric decay of the injected waves <ref> E.Z Gusakov and A. Yu. Popov Plasma Phys. Comtrol. Fusion '''60''' 025001 (2018)</ref>. In order for this to occur, a hollow profile of the density is necessary, as in TJ-II ECR heated plasmas. | A possible explanation for the suprathermal ions is a parametric decay of the injected waves <ref> E.Z Gusakov and A. Yu. Popov Plasma Phys. Comtrol. Fusion '''60''' 025001 (2018)</ref>. In order for this to occur, a hollow profile of the density is necessary, as in TJ-II ECR heated plasmas. |
edits