LNF:Estudios del confinamiento mejorado y de impurezas en los Stellarators TJ-II y W7-X mediante inyección de pastillas criogénicas (Pellets) y encapsulados de impurezas (TESPEL): Difference between revisions

Kjm (talk | contribs)
Kjm (talk | contribs)
 
(3 intermediate revisions by 2 users not shown)
Line 18: Line 18:


'''Financing granted (direct costs)''': 130.000 €
'''Financing granted (direct costs)''': 130.000 €
[[File:Logo_PN.jpg|600px]]


== Description of the project ==
== Description of the project ==
Line 27: Line 29:
2. The second aim is to continue to support and expand impurity transport studies in TJ-II, W7-X and LHD. Under the umbrella of a trilateral collaboration (2020-2029) with the National Institute for Fusion Science (Japan) and IPP-Max-Planck (Greifswald, Germany), the Tracer-Encapsulated Solid Pellet (TESPEL) method is now employed on TJ-II, W7-X and LHD. TESPELs are polystyrene spheres (diameter <1 mm) loaded with small quantities of selected impurities (atomic elements other than fuel). Thus, TESPEL allows delivering a precise quantify of tracer to a preselected location in the plasma core, after which its transport can be evaluated. An important aspect of previous projects was the establishment of a laboratory to fabricate TESPELs at Ciemat. Since then several hundred TESPELs prepared at Ciemat have been injected successfully into plasmas created in these devices. Thus, key goals of this current project are to continue TESPEL fabrication at this laboratory, thereby allowing Ciemat to maintain its fruitful collaborations with W7-X and LHD, and to expand TESPEL based impurity control studies. For instance, during recent experiments with TESPEL at LHD, project members determined that mid-/high- Z atomic ions can be flushed out of a high-density plasma if Li-granules are dropped continuously into the plasma edge <ref>3</ref>. When results were compared with results from reference plasmas, confinement times of high-Z ions were reduced by a factor 4 or more. It is extend to explore further this new operational scenario for stellarators.
2. The second aim is to continue to support and expand impurity transport studies in TJ-II, W7-X and LHD. Under the umbrella of a trilateral collaboration (2020-2029) with the National Institute for Fusion Science (Japan) and IPP-Max-Planck (Greifswald, Germany), the Tracer-Encapsulated Solid Pellet (TESPEL) method is now employed on TJ-II, W7-X and LHD. TESPELs are polystyrene spheres (diameter <1 mm) loaded with small quantities of selected impurities (atomic elements other than fuel). Thus, TESPEL allows delivering a precise quantify of tracer to a preselected location in the plasma core, after which its transport can be evaluated. An important aspect of previous projects was the establishment of a laboratory to fabricate TESPELs at Ciemat. Since then several hundred TESPELs prepared at Ciemat have been injected successfully into plasmas created in these devices. Thus, key goals of this current project are to continue TESPEL fabrication at this laboratory, thereby allowing Ciemat to maintain its fruitful collaborations with W7-X and LHD, and to expand TESPEL based impurity control studies. For instance, during recent experiments with TESPEL at LHD, project members determined that mid-/high- Z atomic ions can be flushed out of a high-density plasma if Li-granules are dropped continuously into the plasma edge <ref>3</ref>. When results were compared with results from reference plasmas, confinement times of high-Z ions were reduced by a factor 4 or more. It is extend to explore further this new operational scenario for stellarators.


== References ==
== Main results ==
To be completed at the end of the project (final report)
 
== Dissemination of project results (peer-reviewed publications and conference presentations) ==


PEER-REVIEWED ARTICLES ASSOCIATED TO THIS PROJECT (SINCE 2024)  
PEER-REVIEWED ARTICLES ASSOCIATED WITH THIS PROJECT (SINCE 2024)  


[1] Enhanced confinement induced by pellet injection in the stellarator TJ-II, I. García-Cortes, K. J. McCarthy, T. Estrada, V. Tribaldos, B. van Milligen, E. Ascasíbar, R. Carrasco, A. A. Chmyga, R. García, J. Hernández-Sánchez, C. Hidalgo, S. Kozachek, F. Medina, D. Medina-Roque, M. A. Ochando, J. L. de Pablos, N. Panadero, I. Pastor and TJ-II Team, Phys. Plasmas 30 (2023) 072506. https://doi.org/10.1063/5.0151395
[1] The rotational transform and enhanced confinement in the TJ-II stellarator, B. Ph. van Milligen, I. García-Cortés, K. J. McCarthy, B. A. Carreras, L. García, A. Cappa, P. Pons-Villalonga, T. Estrada, D. Medina-Roque, J. hernández-Sánchez, R. García, O. S. Kozachok, O. O. Chmyga, J. L. de Pablos, J. M. Barcala, A. Molinero, D. Tafalla, I. Pastor, D. Tafalla, A. de la Peña, F. Lapayese and the TJ-II Team, J. Plasma Phys. 90 (2025) E98, https://doi.org/10.1017/S0022377825100433


[2] Multi-pellet injection into the NBI-heated phase of TJ-II plasmas, K. J. McCarthy, I. García-Cortés, A. Alonso, A. Arias-Camisón, E. Ascasíbar, A. Baciero, A. Cappa, R. Carrasco, O. O. Chmyga, T. Estrada, R. García, J. Hernández-Sánchez, F. J. Herranz, O. S. Kozachok, B. López Miranda, F. Medina, D. Medina-Roque, B. van Milligen, M. Navarro, M. A. Ochando, J. L. de Pablos, N. Panadero, I. Pastor, J. de la Riva, M. C. Rodríguez, D. Tafalla, V. Tribaldos and TJ-II Team, Nucl. Fusion 64 (2024) 066019, https://doi.org/10.1088/1741-4326/ad4047.
[2] Multi-pellet injection into the NBI-heated phase of TJ-II plasmas, K. J. McCarthy, I. García-Cortés, A. Alonso, A. Arias-Camisón, E. Ascasíbar, A. Baciero, A. Cappa, R. Carrasco, O. O. Chmyga, T. Estrada, R. García, J. Hernández-Sánchez, F. J. Herranz, O. S. Kozachok, B. López Miranda, F. Medina, D. Medina-Roque, B. van Milligen, M. Navarro, M. A. Ochando, J. L. de Pablos, N. Panadero, I. Pastor, J. de la Riva, M. C. Rodríguez, D. Tafalla, V. Tribaldos and TJ-II Team, Nucl. Fusion 64 (2024) 066019, https://doi.org/10.1088/1741-4326/ad4047.


[3] Reduction of impurity confinement times in lithium-powder induced reduced-turbulence plasmas in the LHD, D. Medina-Roque, F. Nespoli, I. García-Cortés, K. J. McCarthy, N. Tamura, C. Suzuki, M. Goto, T. Kawate, Y. Kawamoto, M. Yoshinuma, K. Ida, K. Tanaka, T. Tokuzawa, H. Funaba, I. Yamada and the LHD team, in preparation for Nucl. Fusion Lett.
[3] Observation of Enhanced Core Impurity Transport in a Turbulence-Reduced Stellarator Plasma, D. Medina-Roque, I. García-Cortés, N. Tamura, K. J. McCarthy, F. Nespoli, K. Tanaka, M. Shoji, S. Masuzaki, H. Funaba, C. Suzuki, A. Mollen, R. Lunsford, K. Ida, M. Yoshinuma, M. Goto, T. Kawate, Y. Kawamoto, T. Kawate, T. Tokuzawa, I. Yamada and the LHD experimental team, sent to Phys. Rev. Res. for publication, LF20501WR.
 
[4] Confinement modelling of enhanced plasma performance after multiple pellet injections in the TJ-II stellarator, V. Tribaldos, I. Garcia-Cortes, K. McCarthy, J. M. Reynolds-Barredo, B. Van Milligen, A. Baciero, R. Carrasco, T. Estrada, D. Medina Roque, I. Pastor and M. C. Rodriguez Fernandez, sent to Nucl. Fusion for publication, NF-108600.
 
[5] Controlling performance bifurcations in stellarators - an inter-machine study of cryogenic-pellet fueling in helical devices, A. Dinklage, J. Alcussón, K. Aleynikova, A. Alonso, J. Baldzuhn, C. Biedler, H. Bouvain, C. Brandt, B. Buttenschön, A. Chmyga, J. de la Riva Villen, T. Estrada, O. Ford, I. García-Cortés, J. Guerrero Arnaiz, K. Hammond, K. Ida, I. Katsumi, S. Inagaki, S. Kado, K. Shinichiro, N. Kanter, A. Kozachek, P. Lang, A. Langenberg, R. Matsutani, K. McCarthy, D. Medina-Roque, T. Minami, G. Motojima, K. Nagasaki, S. Ohshima, N. Pablant, N. Panadero, K. Rahbarnia, R. Sakamoto, S. Satake, H. Smith, T. Stange, N. Tamura, K. Tanaka, H. Thienpondt, H. Thomsen, A. von Stechow, B. van Milligen, T. Windisch, R. Wolf, P. Xanthopoulos, M. Yoshinuma, D. Zhang, A. Zocco, The Heliotron-J Team, The TJ-II Team, The LHD Experiment Team and the W7-X Team, sent to Nucl. Fusion for publication, NF-107510.