LNF:Fuelling and Impurity Control Studies in the stellarators TJ-II and W7-X using Cryogenic Pellets and Tracer-Encapsulated Solid Pellets (TESPEL): Difference between revisions

Line 47: Line 47:
5. A tracer-encapsulated solid pellet (TESPEL) system was commissioned successfully for the stellarator  Wendelstein 7-X (W7-X) during its OP1.2b experimental campaign [9, 10, 11, 12]. TESPELs are polystyrene encapsulated solid pellets loaded with a single tracer or multiple tracers that are employed for impurity transport studies. During the OP1.2b campaign approximately 140 pellet injections were performed with successful delivery rate of 89%, this result showing that TESPEL production is very reliable. A significant fraction of those TESPELs were fabricated at Ciemat. A large number of TESPELs have been produced for the 2024 SOII experimental campaign on W7-X and for the 2024 campaign on the Large Helical Device (LHD) stellarator. The results for these experiments will be published in the near future.
5. A tracer-encapsulated solid pellet (TESPEL) system was commissioned successfully for the stellarator  Wendelstein 7-X (W7-X) during its OP1.2b experimental campaign [9, 10, 11, 12]. TESPELs are polystyrene encapsulated solid pellets loaded with a single tracer or multiple tracers that are employed for impurity transport studies. During the OP1.2b campaign approximately 140 pellet injections were performed with successful delivery rate of 89%, this result showing that TESPEL production is very reliable. A significant fraction of those TESPELs were fabricated at Ciemat. A large number of TESPELs have been produced for the 2024 SOII experimental campaign on W7-X and for the 2024 campaign on the Large Helical Device (LHD) stellarator. The results for these experiments will be published in the near future.


6. Experiments in the LHD with continuous lithium power dropping have allowed the creation of a reactor-relevant high-density plasma regime [8, 9]. This is characterized by increased energy confinement as well as surpressed turbulence and reduced impurity confinement. The transition to this regime is driven by the continuous dropping of Li-powder grains into the plasma. When such plasmas are compared to plasmas without Li-powder the achieved high-performance characteristics include: increased plasma energy & core electron temperature, reduced plasma-wall interaction, and an up to one order of magnitude reduction in plasma turbulence across the whole plasma radius in the frequency range 5 to 500 kHz. In addition, and contrary to expectations for high-density plasmas in stellarators, it is seen, when injecting TESPELs to deposit tracers in the core of this high-performance phase, that impurity confinement is significantly reduced for plasmas with Li powder when compared to confinement in discharges without Li-powder. These new results demonstrate the potential of continuous dropping of Li-powder into stellarator plasmas for simultaneously accessing enhanced confinement regimes while avoiding impurity accumulation.
6. Experiments in the LHD with continuous lithium power dropping have allowed the creation of a reactor-relevant high-density plasma regime [13, 14]. This is characterized by increased energy confinement as well as surpressed turbulence and reduced impurity confinement. The transition to this regime is driven by the continuous dropping of Li-powder grains into the plasma. When such plasmas are compared to plasmas without Li-powder the achieved high-performance characteristics include: increased plasma energy & core electron temperature, reduced plasma-wall interaction, and an up to one order of magnitude reduction in plasma turbulence across the whole plasma radius in the frequency range 5 to 500 kHz. In addition, and contrary to expectations for high-density plasmas in stellarators, it is seen, when injecting TESPELs to deposit tracers in the core of this high-performance phase, that impurity confinement is significantly reduced for plasmas with Li powder when compared to confinement in discharges without Li-powder. These new results demonstrate the potential of continuous dropping of Li-powder into stellarator plasmas for simultaneously accessing enhanced confinement regimes while avoiding impurity accumulation.


== References ==
== References ==
207

edits