207
edits
Line 63: | Line 63: | ||
[6] Commissioning of the Tracer-Encapsulated Solid Pellet (TESPEL) Injection system for Wendelstein 7-X and first results, R. Bussiahn, N. Tamura, K. J. McCarthy, B. Buttenschön, C. Brandt, A. Dinklage, A. Langenberg and the W7-X team, Plasma Phys. Control. Fusion, 66 (2024) 115020. https://doi.org/10.1088/1741-4326/ac2cf5. | [6] Commissioning of the Tracer-Encapsulated Solid Pellet (TESPEL) Injection system for Wendelstein 7-X and first results, R. Bussiahn, N. Tamura, K. J. McCarthy, B. Buttenschön, C. Brandt, A. Dinklage, A. Langenberg and the W7-X team, Plasma Phys. Control. Fusion, 66 (2024) 115020. https://doi.org/10.1088/1741-4326/ac2cf5. | ||
[7] | [7] Experimental confirmation of efficient island divertor operation and successful neoclassical transport optimization in Wendelstein 7-X, T. S. Pedersen, I. Abramovic, P. Agostinetti, ..., I. García-Cortés, K. J. McCarthy, …, N. Panadero Alvare et al., Nucl Fusion 62, 042022 (2022). DOI: 10.1088/1741-4326/ac2cf5. | ||
[8] | [8] A comparison of the influence of plasmoid-drift mechanisms on plasma fuelling by cryogenic pellets in ITER and Wendelstein 7-X, N. Panadero, F. Koechl, A. R. Polevoi, J. Baldzuhn, C. D. Beidler, P. Lang, A. Loarte, A. Matsuyama, K. J. McCarthy, B. Pégourié, and Y. Turkin, Nucl. Fusion 63, 046022 (2023). https://doi.org/10.1088/1741-4326/acbc34 | ||
[9] | [9] | ||
<!-- DO NOT REMOVE THE FOLLOWING LINES --> | <!-- DO NOT REMOVE THE FOLLOWING LINES --> |
edits