LNF:Fuelling and Impurity Control Studies in the stellarators TJ-II and W7-X using Cryogenic Pellets and Tracer-Encapsulated Solid Pellets (TESPEL): Difference between revisions

Line 41: Line 41:
2. New studies, performed with multiple pellet injections, have extended the TJ-II operational regime well beyond limits previously achieved in this device using NBI heating and gas puff [2]. In order to achieve best results, it has been determined that the plasma target electron density should to be in the range 1x10^19 m^-3 to 2.5x10^19 m^-3 and time separations between pellets should be close to energy confinement times, around 10 ms. It is also found, using a Charge Exchange Recombination Spectroscopy diagnostic, that while the plasma electron temperature is almost unaffected by such pellet injections, the majority ion temperature irises significantly due to reduced ion radial heat fluxes during the PiEC phase. It is also found that enhanced performance is independent of whether co- or counter-NBI heating beam is employed. Finally, record stored diamagnetic energy content and plasma beta values are achieved when the largest available pellets are employed. The results indicate that pellet injections extend the operational regime well beyond limits previously achieved in TJ-II without pellets.
2. New studies, performed with multiple pellet injections, have extended the TJ-II operational regime well beyond limits previously achieved in this device using NBI heating and gas puff [2]. In order to achieve best results, it has been determined that the plasma target electron density should to be in the range 1x10^19 m^-3 to 2.5x10^19 m^-3 and time separations between pellets should be close to energy confinement times, around 10 ms. It is also found, using a Charge Exchange Recombination Spectroscopy diagnostic, that while the plasma electron temperature is almost unaffected by such pellet injections, the majority ion temperature irises significantly due to reduced ion radial heat fluxes during the PiEC phase. It is also found that enhanced performance is independent of whether co- or counter-NBI heating beam is employed. Finally, record stored diamagnetic energy content and plasma beta values are achieved when the largest available pellets are employed. The results indicate that pellet injections extend the operational regime well beyond limits previously achieved in TJ-II without pellets.


3.
3. As noted above, improvement confinement associated with the injection of pellets has been observed in TJ-II during NBI phase of its plasmas. Using a simple model, the modification of turbulent transport by a pellet injection and how this modification affects particle confinement time has been studied [3]. The results indicate a relationship between improved confinement and the evolution of shear flows due to turbulence, especially near low order rational surfaces. Furthermore, experiments show that an additional pellet, or pellets, may enhance the confinement improvement produced by the first. This effect is reproduced in the model when the second density pellet is launched soon after the first one. For this to occur, the second pellet must be injected in the transient period, before the plasma returns to the steady state.
 
4.


== References ==
== References ==
207

edits