Flux coordinates: Difference between revisions

Line 178: Line 178:
If we consider an equilibrium magnetic field such that <math> \mathbf{j}\times\mathbf{B} \propto \nabla\psi</math>, where <math> \mathbf{j}</math> is the current density , then both <math> \mathbf{B}\cdot\nabla\psi = 0</math> and <math> \nabla\times\mathbf{B}\cdot\nabla\psi = 0</math> and the magnetic field can be written as
If we consider an equilibrium magnetic field such that <math> \mathbf{j}\times\mathbf{B} \propto \nabla\psi</math>, where <math> \mathbf{j}</math> is the current density , then both <math> \mathbf{B}\cdot\nabla\psi = 0</math> and <math> \nabla\times\mathbf{B}\cdot\nabla\psi = 0</math> and the magnetic field can be written as
:<math>
:<math>
\mathbf{B} = -\eta\nabla\psi + \nabla\chi
\mathbf{B} = \nabla\chi -\eta\nabla\psi  
</math>
</math>
where <math>\chi</math> is identified as the magnetic ''scalar'' potential. Its general form is
where <math>\chi</math> is identified as the magnetic ''scalar'' potential. Its general form is
Line 192: Line 192:
\int_S \mu_0\mathbf{j}\cdot d\mathbf{S}  
\int_S \mu_0\mathbf{j}\cdot d\mathbf{S}  
= \int_{\partial S}\mathbf{B}\cdot d\mathbf{l}  
= \int_{\partial S}\mathbf{B}\cdot d\mathbf{l}  
= \oint(-\eta\nabla\psi + \nabla\chi)\cdot d\mathbf{l}
= \oint(\nabla\chi-\eta\nabla\psi)\cdot d\mathbf{l}
= \oint(-\eta d\psi + d\chi)
= \oint(d\chi-\eta d\psi )
</math>
</math>
and choosing an integration circuit contained within a flux surface <math>(d\psi = 0)</math>. Then we get
and choosing an integration circuit contained within a flux surface <math>(d\psi = 0)</math>. Then we get
204

edits