H-mode: Difference between revisions

368 bytes added ,  29 August 2009
Line 9: Line 9:
The local suppression of turbulence leads to a reduction of transport and a steepening of the edge profiles.
The local suppression of turbulence leads to a reduction of transport and a steepening of the edge profiles.
<ref>[http://dx.doi.org/10.1088/0741-3335/49/12B/S01 F. Wagner, ''A quarter-century of H-mode studies'', Plasma Phys. Control. Fusion '''49''' (2007) B1-B33]</ref>
<ref>[http://dx.doi.org/10.1088/0741-3335/49/12B/S01 F. Wagner, ''A quarter-century of H-mode studies'', Plasma Phys. Control. Fusion '''49''' (2007) B1-B33]</ref>
The sheared flow is generated by the turbulence itself via the Reynolds Stress mechanism.
The sheared flow can be generated by the turbulence itself via the Reynolds Stress mechanism.
<ref>[http://dx.doi.org/10.1088/0741-3335/43/10/308 S.B. Korsholm et al, ''Reynolds stress and shear flow generation'', Plasma Phys. Control. Fusion '''43''' (2001) 1377-1395]</ref>
<ref>[http://dx.doi.org/10.1088/0741-3335/43/10/308 S.B. Korsholm et al, ''Reynolds stress and shear flow generation'', Plasma Phys. Control. Fusion '''43''' (2001) 1377-1395]</ref>
Thus, the H-mode is the consequence of a self-organizing process in the plasma.
The details of this mechanism are the subject of ongoing studies.
The details of this mechanism are the subject of ongoing studies.
<ref>[http://link.aip.org/link/?PHPAEN/16/012504/1 M.A. Malkov and P.H. Diamond, ''Weak hysteresis in a simplified model of the L-H transition'', Phys. Plasmas '''16''' (2009) 012504]</ref>
<ref>[http://link.aip.org/link/?PHPAEN/16/012504/1 M.A. Malkov and P.H. Diamond, ''Weak hysteresis in a simplified model of the L-H transition'', Phys. Plasmas '''16''' (2009) 012504]</ref>
The mechanism is probably related to the mechanism for forming an [[Internal Transport Barrier]].
However, other factors can also contribute, such as the viscous damping, which might explain the dependence on rational surfaces observed in the stellarator W7-AS.
<ref>[http://dx.doi.org/10.1088/0741-3335/42/7/306 H. Wobig and J. Kisslinger, ''Viscous damping of rotation in Wendelstein 7-AS'', Plasma Phys. Control. Fusion '''42''' (2000) 823-841]</ref>
Thus, the H-mode is the consequence of a self-organizing process in the plasma.
The mechanism is probably closely related to the mechanism for forming an [[Internal Transport Barrier]].


== ELMs ==
== ELMs ==