H-mode: Difference between revisions
(→ELMs) |
|||
Line 8: | Line 8: | ||
This transport bifurcation is the consequence of the suppression of turbulence in the edge plasma, induced by a sheared flow layer and an associated edge radial electric field. | This transport bifurcation is the consequence of the suppression of turbulence in the edge plasma, induced by a sheared flow layer and an associated edge radial electric field. | ||
<ref>[http://dx.doi.org/10.1088/0741-3335/49/12B/S01 F. Wagner, ''A quarter-century of H-mode studies'', Plasma Phys. Control. Fusion '''49''' (2007) B1-B33]</ref> | <ref>[http://dx.doi.org/10.1088/0741-3335/49/12B/S01 F. Wagner, ''A quarter-century of H-mode studies'', Plasma Phys. Control. Fusion '''49''' (2007) B1-B33]</ref> | ||
The | The sheared flow is generated by the turbulence itself via the Reynolds Stress mechanism. | ||
The details of this mechanism are the subject of ongoing studies. | |||
== ELMs == | == ELMs == |
Revision as of 10:22, 25 August 2009
When a magnetically confined plasma is heated strongly and a threshold heating power level is exceeded, it may spontaneously transition from a low confinement (or L-mode) state to a high confinement (or H-mode) state. [1] In the H-mode, the energy confinement time is significantly enhanced, i.e., typically by a factor of 2 or more. [2]
Physical mechanism
This transport bifurcation is the consequence of the suppression of turbulence in the edge plasma, induced by a sheared flow layer and an associated edge radial electric field. [3] The sheared flow is generated by the turbulence itself via the Reynolds Stress mechanism. The details of this mechanism are the subject of ongoing studies.
ELMs
The steep edge gradients (of density and temperature) lead to quasi-periodic violent relaxation phenomena, known as Edge Localized Modes (ELMs), which have a strong impact on the surrounding vessel. [4] Although Quiescent H-modes exist (without ELMs), they are considered not convenient due to the accumulation of impurities. To achieve steady state, an ELMy H-mode is preferred and this mode of operation is proposed as the standard operating scenario for ITER, thus converting ELM mitigation into a priority. [5]
References
- ↑ F. Wagner et al, Development of an Edge Transport Barrier at the H-Mode Transition of ASDEX, Phys. Rev. Lett. 53 (1984) 1453 - 1456
- ↑ M. Keilhacker, H-mode confinement in tokamaks, Plasma Phys. Control. Fusion 29 (1987) 1401-1413
- ↑ F. Wagner, A quarter-century of H-mode studies, Plasma Phys. Control. Fusion 49 (2007) B1-B33
- ↑ D.N. Hill, A review of ELMs in divertor tokamaks, Journal of Nuclear Materials 241-243 (1997) 182-198
- ↑ M.R. Wade, Physics and engineering issues associated with edge localized mode control in ITER, Fusion Engineering and Design 84, Issues 2-6 (2009) 178-185