TJ-II:Understanding an often observed transient rise in core electron temperature during pellet injection into TJ-II plasmas: Difference between revisions

From FusionWiki
Jump to navigation Jump to search
Line 13: Line 13:


== Description of the activity, including motivation/objectives and experience of the proponent (typically one-two pages)==
== Description of the activity, including motivation/objectives and experience of the proponent (typically one-two pages)==
A short-lived (≤200 μs) transient rise of core electron temperature has often been observed before an injected pellet is completely ablated by the TJ-II plasma. It is detected by both the Thomson Scattering and Electron Cyclotron Emission diagnostic systems and when observed, this core temperature rise begins within ~100 μs after a pellet enters the plasma through the last-closed magnetic flux surface, as it is approaches the plasma core. Such behaviour occurs in plasmas maintained by either on- or off-axis electron cyclotron resonance heating. It is postulated that a steepening of the radial temperature gradient leads to a more positive radial electric field in the core so that the plasma moves deeper in Core Electron Root Confinement. The resultant improved confinement of injected heating power then leads to the raised core temperature. Conversely, it is observed that, when a pellet is injected into plasma with a peaked core electron temperature profile, the recovery time for core temperatures is significantly longer than for edge temperatures. Given the possible implications for pellet penetration and particle deposition, it is intended to make a systematic study by injecting pellets in plasmas in which such a core temperature rise is observed and using the TS diagnostic to understand the influence of the temperature gradient.  
A short-lived (≤200 μs) transient rise of core electron temperature has often been observed before an injected pellet is completely ablated by the TJ-II plasma.<ref>K. J. McCarthy, et al, Proc. 43rd EPS Conference, Leuven, Belgica (2016)</ref> It is detected by both the Thomson Scattering and Electron Cyclotron Emission diagnostic systems and when observed, this core temperature rise begins within ~100 μs after a pellet enters the plasma through the last-closed magnetic flux surface, as it is approaches the plasma core. Such behaviour occurs in plasmas maintained by either on- or off-axis electron cyclotron resonance heating. It is postulated that a steepening of the radial temperature gradient leads to a more positive radial electric field in the core so that the plasma moves deeper in Core Electron Root Confinement. The resultant improved confinement of injected heating power then leads to the raised core temperature. Conversely, it is observed that, when a pellet is injected into plasma with a peaked core electron temperature profile, the recovery time for core temperatures is significantly longer than for edge temperatures. Given the possible implications for pellet penetration and particle deposition, it is intended to make a systematic study by injecting pellets in plasmas in which such a core temperature rise is observed and using the TS diagnostic to understand the influence of the temperature gradient.  
<ref>KJ McCarthy et al, Nucl Fusion 57 (2017) 056039</ref>
<ref>KJ McCarthy et al, Nucl Fusion 57 (2017) 056039</ref>
<ref>N Panadero et al, Nucl Fusion 58 (2018) 026025</ref>
<ref>N Panadero et al, Nucl Fusion 58 (2018) 026025</ref>
<ref>KJ McCarthy et al, Europhys Lett 120 (2017) 25001</ref>
<ref>KJ McCarthy et al, Europhys Lett 120 (2017) 25001</ref>
<ref>K. J. McCarthy, et al, Proc. 43rd EPS Conference, Leuven, Belgica (2016)</ref>


== If applicable, International or National funding project or entity ==
== If applicable, International or National funding project or entity ==

Revision as of 17:34, 19 February 2018

Experimental campaign

2018 Spring

Proposal title

Understanding an often observed transient rise in core electron temperature during pellet injection into TJ-II plasmas

Name and affiliation of proponent

K.J. McCarthy, J.L. Velasco, N. Panadero, J. Hernández, E. de la Cal, Laboratorio Nacional de Fusión, CIEMAT, Spain, N. Tamura, National Institute for Fusion Science, Toki, Japan, M. Calvo, Universidad Politécnica de Madrid, Madrid, Spain


Details of contact person at LNF (if applicable)

Kieran J McCarthy

Description of the activity, including motivation/objectives and experience of the proponent (typically one-two pages)

A short-lived (≤200 μs) transient rise of core electron temperature has often been observed before an injected pellet is completely ablated by the TJ-II plasma.[1] It is detected by both the Thomson Scattering and Electron Cyclotron Emission diagnostic systems and when observed, this core temperature rise begins within ~100 μs after a pellet enters the plasma through the last-closed magnetic flux surface, as it is approaches the plasma core. Such behaviour occurs in plasmas maintained by either on- or off-axis electron cyclotron resonance heating. It is postulated that a steepening of the radial temperature gradient leads to a more positive radial electric field in the core so that the plasma moves deeper in Core Electron Root Confinement. The resultant improved confinement of injected heating power then leads to the raised core temperature. Conversely, it is observed that, when a pellet is injected into plasma with a peaked core electron temperature profile, the recovery time for core temperatures is significantly longer than for edge temperatures. Given the possible implications for pellet penetration and particle deposition, it is intended to make a systematic study by injecting pellets in plasmas in which such a core temperature rise is observed and using the TS diagnostic to understand the influence of the temperature gradient. [2] [3] [4]

If applicable, International or National funding project or entity

FIS2017-89326-R

Description of required resources

Required resources:

  • Number of plasma discharges or days of operation: 2 days
  • Essential diagnostic systems:Thomson Scattering, microwave interferometer, ECE, soft x-rays, and plasma current measurements. Fast-frame camera with fibre-optic bundle.
  • Type of plasmas (heating configuration): ECRH
  • Specific requirements on wall conditioning if any:
  • External users: need a local computer account for data access: no
  • Any external equipment to be integrated? Provide description and integration needs:

Preferred dates and degree of flexibility

Preferred dates: (not available 10-04-2018 to 12-04-2018, 24-04-2018 to 26-04-2018, and 17-05-2018)

References

  1. K. J. McCarthy, et al, Proc. 43rd EPS Conference, Leuven, Belgica (2016)
  2. KJ McCarthy et al, Nucl Fusion 57 (2017) 056039
  3. N Panadero et al, Nucl Fusion 58 (2018) 026025
  4. KJ McCarthy et al, Europhys Lett 120 (2017) 25001

Back to list of experimental proposals