Stellarator: Difference between revisions

From FusionWiki
Jump to navigation Jump to search
(→‎Operational stellarators: updated link to SCR-1)
Line 23: Line 23:
* [http://www.hsx.wisc.edu/ HSX] (Madison, WI, USA)
* [http://www.hsx.wisc.edu/ HSX] (Madison, WI, USA)
* [http://www.lhd.nifs.ac.jp/en/ LHD] (Toki, Japan)
* [http://www.lhd.nifs.ac.jp/en/ LHD] (Toki, Japan)
* [https://en.wikipedia.org/wiki/SCR-1 SCR-1] (Cartago, Costa Rica)  
* [[Wikipedia:SCR-1|SCR-1]] (Cartago, Costa Rica)  
* [[TJ-II]] (Madrid, Spain)
* [[TJ-II]] (Madrid, Spain)
* [[TJ-K]] (Stuttgart, Germany)
* [[TJ-K]] (Stuttgart, Germany)

Revision as of 15:03, 20 December 2019

A stellarator is a magnetic confinement device. The rotational transform is predominantly generated by external coils - as opposed to a tokamak, in which the poloidal field is generated by plasma currents. Hybrid concepts (including the concepts known as quasi-axisymmetry and quasi-omnigeneity) employ both external coils and self-generated (bootstrap) currents (e.g. NCSX).

NCSX plasma vessel.

Classification of stellarators

Somewhat arbitrarily, stellarators may be classified according to the type of magnetic configuration.

  • Torsatron / Heliotron: the rotational transform is produced by an external helical coil surrounding the plasma.
  • Heliac: a stellarator with a toroidally helical magnetic axis.
  • Helias: advanced stellarator with modular coils.

Defunct stellarators

  • ATF (Oak Ridge, TN, USA)
  • CHS (Japan)
  • H-1NF (Canberra, Australia)
  • NCSX (Princeton, NJ, USA) - cancelled before construction was completed
  • W7-AS (Garching, Germany, 1988-2002)

Operational stellarators

Future stellarators

  • QPS (in design phase, TN, USA)
  • STELL (in design phase, University of Lorraine, France, in collaboration with IPP Greifswald)

See also

References

  • M. Wakatani, Stellarator and Heliotron devices, Oxford University Press, New York and Oxford (1998) ISBN 0-19-507831-4
  • P. Helander, Theory of plasma confinement in non-axisymmetric magnetic fields, Rep. Prog. Phys. 77 (2014) 087001