Stellarator: Difference between revisions

From FusionWiki
Jump to navigation Jump to search
(→‎Operational stellarators: added SCR-1 stellarator to the list)
(→‎Operational stellarators: Updated W7-X link)
Line 29: Line 29:
* [http://www.fusionvic.org/ UST-1] (Spain) - tabletop experiment
* [http://www.fusionvic.org/ UST-1] (Spain) - tabletop experiment
* [http://www.ipp.mpg.de/ippcms/eng/for/bereiche/e3/projekte/wega.html WEGA] (Greifswald, Germany)
* [http://www.ipp.mpg.de/ippcms/eng/for/bereiche/e3/projekte/wega.html WEGA] (Greifswald, Germany)
* [https://www.ipp.mpg.de/ippcms/de/pr/forschung/w7x/index.html W7-X] (Greifswald, Germany)
* [[:Wikipedia:Wendelstein_7-X|W7-X]] (Greifswald, Germany)


== Future stellarators ==
== Future stellarators ==

Revision as of 11:24, 20 March 2019

A stellarator is a magnetic confinement device. The rotational transform is predominantly generated by external coils - as opposed to a tokamak, in which the poloidal field is generated by plasma currents. Hybrid concepts (including the concepts known as quasi-axisymmetry and quasi-omnigeneity) employ both external coils and self-generated (bootstrap) currents (e.g. NCSX).

NCSX plasma vessel.

Classification of stellarators

Somewhat arbitrarily, stellarators may be classified according to the type of magnetic configuration.

  • Torsatron / Heliotron: the rotational transform is produced by an external helical coil surrounding the plasma.
  • Heliac: a stellarator with a toroidally helical magnetic axis.
  • Helias: advanced stellarator with modular coils.

Defunct stellarators

  • ATF (Oak Ridge, TN, USA)
  • CHS (Japan)
  • H-1NF (Canberra, Australia)
  • NCSX (Princeton, NJ, USA) - cancelled before construction was completed
  • W7-AS (Garching, Germany, 1988-2002)

Operational stellarators

Future stellarators

  • QPS (in design phase, TN, USA)
  • STELL (in design phase, University of Lorraine, France, in collaboration with IPP Greifswald)

See also

References

  • M. Wakatani, Stellarator and Heliotron devices, Oxford University Press, New York and Oxford (1998) ISBN 0-19-507831-4
  • P. Helander, Theory of plasma confinement in non-axisymmetric magnetic fields, Rep. Prog. Phys. 77 (2014) 087001