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1 The problem

Each stellarator uses its own definition of a minor radius. For practical
purposes such as representing the stellarator’s experimental profiles, this is
fine. However, when comparing data from different stellarators (the ISS
confinement database!), this is not an unimportant issue, since the various
definitions of minor radius can vary by as much as 20%, due to the strong
deviations of the stellarator flux surfaces from a perfect torus.

Below, we summarize some of the methods to define the minor radius,
and finish by giving a recommendation for the confinement database.

2 Definition of the minor radius of a (perfect)

toroid

The volume (V ) and surface (S) of any flux surface (including the LCFS)
can be evaluated with high precision, so it seems reasonable to attempt a
definition of the minor radius based on these concepts.

A perfect toroid is a torus with circular axis and circular poloidal cross
sections. The surface and volume of a perfect toroid are given by:

S = 4π2Rr

V = 2π2Rr2 (1)

One can either use these relations directly to define r (by choosing a value
of R), or divide them to obtain:

r =
2V

S
(2)
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This latter definition has the advantage that it is not necessary to choose R
(which may not be straightforward in a machine with a helical axis).

The problem, however, is that the magnetic surfaces are not perfect
toroids, so the question is: how can this analysis be improved to define
an (effective) radius for a non-perfect torus?

3 Definition of the minor radius of a more

general topological torus

If volume and surface are parametrized by a single parameter s, then∫ s

0
S(x)dx = V (s) (3)

so:

S(s) =
dV

ds
=
dV

dS

dS

ds
(4)

and:
S

dS/ds
=
dV

dS
(5)

This is generally valid. However, it does not tell you what the radius r is:
you still need an additional assumption, namely, the dependence of S on r
(or, equivalently, of V on r), as we will see below.

The parameter s has the dimension of a radius, due to Eq. 3. Therefore,
one can rename s to r without loss of generality.

If one assumes that S is linear in r, or S = cr (which seems reasonable
for a toroidal surface), one immediately obtains a definition for the radius:

S

dS/dr
= r =

dV

dS
(6)

It is not necessary to assume anything about the volume dependence, since
this is defined by Eq. 3. This definition is the most reasonable one from the
topological standpoint.

However, it should be realized that this is not the only definition possible.
If one makes the more general assumption that S = crα, then it follows:

V =
c

α + 1
rα+1

r = α
dV

dS
(7)
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Obviously, this does not exhaust the possibilities. Generally, one could set
S = f(r), which should be a monotonically increasing function of r to make
sense geometrically; however, in general, the simple linear relation between
r and dV/dS is then lost.

4 Side note: other parametric volumes

Eq. 7 is in fact valid for any parametric surface (of a single parameter).
For example, for a ball, one would simply have to assume that S depends
quadratically on r: S = cr2, so α = 2 and:

r = 2
dV

dS
(8)

This is consistent with the known expressions S = 4πr2 and V = 4
3
πr3 for a

ball.

5 Definitions based on poloidal cross sections

Assume we have a flux-based coordinate system (ψ, φ, θ), where ψ is the flux,
φ the toroidal cylindrical angle and θ an appropriate poloidal angle. At a
given value of φ, the cross section is:

A(ψ, φ) =
∫ 2π

0

∫ ψ

0
r(ψ′, θ, φ)dψ′dθ = 2π

∫ ψ

0
r(ψ′, φ)dψ′ (9)

where the definition of r(ψ, φ) (the mean radius of surface ψ at angle φ) is
still open. We would be interested to determine the mean of this quantity
over φ.

Note that the circumference of the poloidal cross-section A is given by

L(ψ, φ) =
dA

dψ
= 2πr(ψ, φ) (10)

These relations inspire two numerical definitions:

• Based on the circumference: compute the circumference L(ψ, φ) for
many φ’s in order to compute the mean L(ψ) = 2πreff .
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• Based on the cross section surface area: compute the area A(ψ, φ) for
many φ’s in order to compute the mean A(ψ) = πr2

eff .

We note that these definitions are based on the idea that the cross section
defined by φ = cst has some physical meaning. While this is true for toka-
maks (due to symmetry), it may not be very relevant to stellarators where
such symmetry is absent. In particular, these definitions may not be very
appropriate for Heliacs.

6 Conclusions

The definition of an effective radius is highly ambiguous for stellarators in
general, and for heliacs in particular. From the above analysis, we would be
inclined to give preference to a definition such as r = dV/dS, but we note
that even this definition is not free from ambiguities.

Therefore, we would like to suggest that the stellarator confinement data
base should not only contain an effective radius r (while providing the un-
derlying assumptions - as we have seen this is absolutely necessary), but also
the values S (surface) and V (volume) of the flux surfaces, whose definition
is unambiguous. Note that one would also need to store dS/dψ and dV/dψ,
in view of the above, or, alternatively, full profiles of S(ψ) and V (ψ), or at
least dV/dS at the LCFS.

An important recommendation would be to drop the custom, inherited
from tokamaks, to make scaling laws based on an effective radius, since that
could easily introduce definition errors as large as 20% or more between
different machines. Scalings should be made on the basis of either S or

√
V ,

instead of r. Possibly, such scalings might work better than the direct scaling
with r, due to the absence of ambiguities in the definitions of these quantities.
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