
• That explanation is insufficient: at same fuelling levels, pedestals

remain colder, particularly at higher densities.

• Neoclassical transport: H-mode pedestal can be W accumulator. W is

driven in by inward pinch from ��� , but once it reaches the top of ���
it would penetrate much more slowly, by diffusion.

W can accumulate, in between ELMs, near Te,ped.

W-associated radiation would slow down the rise of Te,ped

in between ELMs, while density continues to rise until an

ELM is triggered, resulting in colder pedestals.
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MOTIVATION FOR STUDY: pedestal in JET-ILW colder tan in JET-C

• JET-ILW (with W divertor): typically Te,ped ~ 0.7-1.2 keV. JET-C (CFC divertor) Te,ped ~ 1.5-2 keV [1,2]

• This is due in part to the much larger fuelling rates required to maintain the ELM frequency up and avoid

W events and accumulation. At larger fuelling, pedestals have larger ne, lower Te

W is generally a very good radiator in the 0.5-2 keV Te range. Calculation is challenging.

One way of representing the information is via the cooling functions LZ(Te). 

For low and medium  Z impurities (C, Be, Ni) radiation is a 

decreasing function of Te from 250 eV: burn through.

For W, two ADAS-based curves are shown:

W 89:  ADAS 89 baseline data, with only low level 

configurations used to estimate line radiated power;

W TP: similar to W 89, but with a different choice of 

configurations,  adjusted recombination coefficients to 

match  ASDEX measurements  in W24+-W46+ range and 

more sophisticated ionization rates [3,4].

Both curves have regions of positive slope: when plasma is 

heated radiation increases, and it is harder for Te to rise. 

But both LW
89(Te) and  LW

TP(Te) omit important effects, 

particularly below 1 keV.

W RADIATION, COOLING FUNCTIONS LZ(Te)

Experimental observations indicate major flaw in dielectronic

recombination (DR) coefficients for mid-range ions with an open 4f 

shell in the ground state. This can increase DR rates in W by a factor 

of 10. It would significantly move the ionisation balance to higher Te

with the expectation that structure would emerge in LW
TP(Te) near 

~600 eV. Work is in progress to incorporate these effects 

SUMMARY, PRELIMINARY CONCLUSIONS, FURTHER WORK
• W injection can produce detachment and a radiating mantle in the outer 10 cm inside the separatrix.

• Severely cooled edge allows deep penetration of neutrals, raising ne & producing hollow ne profiles.

• W motion along and across field lines has similar time scales: plumes seen in bolometry. This effect 

scales with machine size squared.

• Sawteeth can transport W inward to the core and back out.

• Work ongoing to improve ADAS predictions of  W radiation in this relevant Te range.

• Transport models required to match observed radiation data require less manipulation of the 

convection terms compared to theory when there is structure in LW(Te) in the 0.3-1 keV range

• We hope to carry out more W ablation experiments into nom-sawtoothing plasmas

BOLOMETRY, time averaged +/- 5 ms, kW/m3

Persistent poloidal structures and plumes

Centrifugal effects produce in-out asymmetry: n=1 MHD, 500 Hz: Mach ~0.3

W ions propagate along field line by collisional diffusion, PS regime.

Random walk estimate of time required for W to spread poloidally� � �� �||�
With L=π(qR+a), q=3, ne=3×1019m-3 typical times are ~7-85 ms

These are comparable to radial transport times.

TRANSPORT MODELLING: radiation from different W models

Ad-hoc D and V used in SANCO to compute Prad from experimental ne,Te and two sets of atomic data,

like W 89 and W TP.

Modelling starts at t=11.2, with the same diffusion and nW(ρ) for both cases.

Convection needed to match radiation data near ρ=0.6 changes with atomic models: V89, VTP

JETTO-NEO+BGB [5-9] used to calculate theory-based transport coefficients, for comparison.

As a first cut on the data, we plot Prad/ne as a function 

of Te from 11.1 s. The nW profile is convolved with 

these curves, but excepting the first timeslice, all 

exhibit an increasing character from Te> 0.6 keV, 

steeper above 0.8 keV, and a bump at 0.4 keV, 

possibly revealing some structure in LW(Te).

Due to flatness of ne near ρ=0.6, the V89 profile needed to reproduce the structure of Prad in that region

provides the best match to the theoretical pinch.

Ad-hoc diffusion vs. theory-based

Normalised Prad/ne experimental Normalised Prad,TP/ne from VTPNormalised Prad,89/ne from V89

Ad-hoc convection vs. neoclassicalInitial W density 

• Te collapses at plasma edge: radiating mantle.

• Below 100 eV radiation dominated by D, Be.

• Power detachment, collapse of Te,edge � Te,core drop

• Langmuir probes: plasma detaches as soon as W

reaches plasma edge, Te,SOL drops from 13 to 5 eV.

W Ablation into L-mode plasma: JET 90472, 2 MA, 2.4 T, 1.2 MW NBI

To investigate to what extent the difference in Te,ped is due to W radiation in the pedestal region we 

injected W (by laser ablation) into cold L-mode plasmas at JET. 

• Hollow ne profile would prevent 

penetration of W into ρ<0.6. 

• D, V  adjusted  to simulate 

effect of sawteeth bringing W 

inward and  force nW(ρ,t) at 

11.2 s.

• W injected at outer midplane,

Octant 6, at t=11 s.

• At most 1.4×1018 W atoms

injected (size of hole left in the

W target)

JET-ILW:  filled symbols

JET-CFC: open symbols

Colours: 

1.8 < Ip (MA) < 2.3

2.3 < Ip (MA) < 2.7
2.7 < Ip (MA) < 3.3

3.3 < Ip (MA) < 3.8

Ip (MA) > 3.8


