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SUMMARY

• Fuelling location affects SOL behaviour and achievable pedestal temperature before ELMs, but 

only when fuelling is sufficiently low and/or pumping sufficiently strong, and/or power high.

• The clearest difference is in the presence of “negative ELMs” at the X-point viewing line, more 

prevalent with divertor fuelling.

• There is a correlation between the presence of negative ELMs at the X-point and the 

temperature of the pedestal top. Negative ELMs correlate with cold pedestals, low confinement.

• Transient W events show direct effects of W on pedestal and ELMs: pedestal radiation increase 

leads to weaker ELMs, colder pedestal. The plasma may or may not recover from such events, 

depending on ELM frequency.

MOTIVATION

• With the JET ITER-like wall (W divertor, Be wall) strong fuelling is normally used to increase ELM

frequency (and reduce ELM size) to avoid W contamination of the plasma. Strong fuelling often

reduces confinement [1,2,3]. JET operation (in C and ILW) typically uses divertor fuelling.

• Is the colder pedestal and lower confinement in ILW affected by fuelling location & pumping?

• We report here on plasmas with lower puffing than usual. Some of them achieved steady good

confinement. Additionally we describe transient W events observed and their effect on the pedestal.

DYNAMIC EVOLUTION OF ELM BEHAVIOUR AND NEGATIVE ELMS

• In a different series of pulses, meant to study the difference between hybrid and baseline

plasmas [6] we find more dynamic situations.

EXPERIMENTAL SETUPAND RESULTS

• Vary poloidal fuelling location in JET ILW plasmas 

with 2 MA, 2.3 T, ne/ne,Greenwald~0.65, and 12-14 MW 

of NBI heating (shapes shown below). 

• ELM frequency achieved for different fuelling levels 

varies with fuelling location and plasma shape 

(injection locations shown below). 

• When sufficient fELM obtained, plasma can recover 

from transient W events & healthy steady state can 

be reached. 

• In this series of pulses, when fELM < 40 Hz, sudden 

W influxes can lead to hollow Te profiles or loss of H-

mode. In those cases fELM shown is measured 0.5 

ms before initial W detection. 

• For each fuelling location we study the lowest value 

at which W was controlled, marked with dashed 

circles in the figure. We only saw differences in the 

blue shape.

Fuelling effects, positive and negative ELMs, pedestal:

• as power increases inner strike and X-

point ELMs change from negative to

positive. At the same time pedestal

temperatures increase.

• It is not clear yet if the X-point is hot

because the pedestal is hot and the

ELM burns through the cold plasma, or

if a hot X-point enables Te,ped to rise

further and produce a larger ELM.

• Correlation between hot X-point and

hot pedestal observed to hold in many

cases.

• Inner strike and X-point together

• In various cases of the gas puff location study

W events were detected, and we see their influence

on pedestal and ELMs

• initial W event that triggered the radiation spike and

drop in Te,ped in uLFS case shown earlier is captured

by a spectroscopic camera as a flash of W I light

(400.8 nm)

Different event, during low pumping red shape, with better outer strike diagnostics.

• This W event was produced by sawtooth arrival (bringing in core impurities and energetic 

ions), in the red shape, when IR measurements are available. Note low pumping and 

correspondingly lower Te,ped.

• note reduction in ELM power density while pedestal radiation is high.

• Pedestal bolometry channels show transient increase in radiation. Pedestal density rises, 

pedestal temperature drops, ELM size decreases, ELM duration increases from 3 to 7 ms.

• Eventually ELMs flush the W out, pedestal returns to previous state.

TRANSIENT W EVENTSAND THEIR CONSEQUENCES

Fig. 2 ELM frequency for different fuelling levels.. Circles 

for Divertor fuelling, Squares for upperLFS, triangles for 

top fuelling. Solid symbols for blue shape, open symbols 

for red shape (see below)

• Langmuir probe analysis shows that in all cases 

studied the inner strike line is partially detached, 

outer is attached.

• “Negative ELMs” are drops in D
α
, instead of spikes. 

They are present when a dense (>1020 m-3) cold 

plasma (Te<1-3 eV) is viewed: Dα
is dominated by 

recombination [5]. When ELM deposits energy in 

plasma Te rises and recombination rate drops, 

leading to reduced D
α
. Later D

α
may increase again 

as plasma cools back down, or as ne and Te rise 

(possibly elsewhere along the line of sight) in 

between ELM

• Divertor fuelling    has negative ELMs at inner 

strike line and X-point.

• Upper LFS fuelling has negative ELMs at inner 

strike, positive ELMs at X-point and outer strike

• Top fuelling     has positive ELMs in all locations

• Situations with negative D
α 
ELMs and cooler 

pedestals (denser divertor) are correlated, in this 

experiment and in hybrid/baseline comparison.

• In most baseline JET ILW plasmas divertor 

fuelling is used and ELMs are negative at least at 

inner strike and X-point.

FUELLING LOCATIONSAND PLASMA SHAPES EXPLORED

Fuelling locations: inner divertor source (iDIV ) is toroidally distributed, upper low field side (uLFS )

and Top are toroidally localized.

Plasmas had 2 different shapes for 3 s each in each pulse (1st blue, then red), shown below

• Blue: with strike points near cryo-pump duct, better pumping and poorer diagnostics. Fuelling location

made a difference to SOL and pedestal (see above). This configuration has H98~ 0.8-0.9, medium

density ne,ped ~ 3.3-4.2 10
19m-2 , hotter pedestals, Te,ped ~ 0.8-1. 0 keV.

• Red: conventional shape with higher triangularity, outer strike on solid W target, lower pumping and

better diagnostic coverage. Fuelling location made little or no difference for this shape. H98~0.75,

density ne,ped ~ 4-5 10
19m-2, pedestals colder Te,ped ~ 0.6 keV
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