

L-H TRANSITION RESULTS FROM RECENT TRITIUM AND DEUTERIUM-TRITIUM CAMPAIGNS AT JET

Emilia R. Solano, Laboratorio Nacional de Fusión, CIEMAT, Spain

Work supported in part by grant PID2021-127727OB-I00 funded by MCIN/AEI/10.13039/501100011033 and ERDF "A way of making Europe"

This work has been carried out within the framework of the EUROfusion Consortium, funded by the European Union via the Euratom Research and Training Programme (Grant Agreement No 101052200 — EUROfusion). Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Commission. Neither the European Union nor the European Commission can be held responsible for them.

The JET L-H transition team

E.R. Solano¹, G. Birkenmeier^{2,3}, C. Silva⁴, E. Delabie⁵, J.C. Hillesheim⁶, A. Baciero¹, I. Balboa⁶, M. Baruzzo⁷, A. Boboc⁶, M. Brix⁶, J. Bernardo⁶, C. Bourdelle⁸, I.S. Carvalho^{4,6,9}, P. Carvalho^{4,6}, C.D. Challis⁶, M. Chernyshova¹⁰, A. Chomiczewska¹⁰, R. Coelho⁴, I. Coffey⁶, T. Craciunescu¹¹, E. de la Cal¹, E. de la Luna¹, R. Dumont⁸, P. Dumortier¹², M. Fontana⁶, J.M. Fontdecaba¹, L. Frassinetti¹³, D. Gallart¹⁴, J. Garcia⁸, C. Giroud⁶, W. Gromelski¹⁰, R.B. Henriques⁴, J. Hall¹⁵, A. Ho¹⁶, L. D. Horton⁶, L. Horvath⁶, P. Jacquet⁶, I. Jepu¹¹, E. Joffrin⁸, A. Kappatou³, D.L. Keeling⁶, D.B. King⁶, V.G. Kiptily⁶, K.K. Kirov⁶, D. Kos⁶, E. Kowalska-Strzęciwilk¹⁰, M. Lennholm^{6,17}, E. Lerche¹², E. Litherland-Smith⁶, A. Loarte⁹, B. Lomanowski⁵, P.J. Lomas⁶, C.F. Maggi⁶, J. Mailloux⁶, M.J. Mantsinen¹⁸, M. Maslov⁶, A.G. Meigs⁶, I. Monakhov⁶, R.B. Morales⁶, A.H. Nielsen¹⁹, D. Nina⁴, C. Noble⁶, E. Pawelec²⁰, M. Poradzinski⁶, G. Pucella²¹, P. Puglia⁶, D. Réfy²², J.J. Rasmussen¹⁹, E. Righi¹⁷, F.G. Rimini⁶, T. Robinson⁶, M. Sertoli⁶, S.A. Silburn⁶, G. Sips¹⁷, P. Sirén⁶, Ž. Štancar^{23,6}, H.J. Sun⁶, G. Szepesi⁶, D. Taylor⁶, E. Tholerus⁶, B. Thomas⁶, G. Verdoolaege¹⁵, P. Vincenzi^{7,24}, B. Viola⁶, N. Vianello^{7,24}, T. Wilson⁶ and JET contributors^{*}

¹Laboratorio Nacional de Fusión, CIEMAT, Madrid, Spain; ²Physik-Department E28, Technische Universität München, 85748 Garching, Germany; ³Max-Planck-Institut für Plasmaphysik, D-85748 Garching, Germany; ⁴Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; ⁵Oak Ridge National Laboratory, Oak Ridge, TN 37831, TN, United States of America; ⁶UKAEA, Culham Science Centre, Abingdon, OX14 3DB, UK; ⁷Consorzio RFX (CNR, ENEA, INFN, Università di Padova, Acciaierie Venete SpA) Corso Stati Uniti 4 - 35127 Padova, Italy;⁸CEA, IRFM, F-13108 Saint Paul Lez Durance, France;⁹ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 Saint Paul Lez Durance Cedex, France;¹⁰Institute of Plasma Physics and Laser Microfusion, Hery 23, 01-497 Warsaw, Poland; ¹¹The National Institute for Laser, Plasma and Radiation Physics, Magurele-Bucharest, Romania; ¹²Laboratory for Plasma Physics LPP-ERM/KMS, B-1000 Brussels, Belgium; ¹³Fusion Plasma Physics, EECS, KTH Royal Institute of Technology, SE-10044 Stockholm, Sweden; ¹⁴Barcelona Supercomputing Center, Barcelona, Spain; ¹⁵Department of Applied Physics, Ghent University, 9000 Ghent, Belgium;; ¹⁶FOM Institute DIFFER, Eindhoven, The Netherlands; ¹⁷European Commission, B-1049 Brussels, Belgium; ¹⁸ICREA and Barcelona Supercomputing Center, Barcelona, Spain; ¹⁹Department of Physics, Technical University of Denmark, Bldg 309, DK-2800 Kgs Lyngby, Denmark; ²⁰Institute of Physics, Opole University, Oleska 48, 45-052 Opole, Poland; ²¹ENEA, Nuclear Fusion and Safety Department, C.R. Frascati, Via E. Fermi 45, 00044 Frascati, Italy; ²²Centre for Energy Research, POB 49, H-1525 Budapest, Hungary; ²³Slovenian Fusion Association (SFA), Jozef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia; ²⁴Institute for Plasma Science and Technology, CNR, Padova, Italy

This work was supported in part by grants FIS2017-85252-R and PID2021-127727OB-I00 funded by MCIN/AEI/ 10.13039/501100011033 and ERDF "A way of making Europe", and by the Spanish National R&D Project PID2019-110854RB-I00 funded through MCIN/AEI/10.13039/501100011033.

Emilia R. Solano | L-H transition: new results from the JET Tritium and Deuterium-Tritium campaigns | PEP ITPA, Culham | 24/10/2023 2

Motivation of T and DT L-H studies

- Most devices investigate isotope effects in Hydrogen, Deuterium and H+D plasmas
- Tritium can be used at JET: investigate DT, T and H+T plasmas to characterise and understand isotope effects
- Especially important to understand how plasma composition affects the power threshold to obtain good confinement: L-H transition !!!
- P_{LH} threshold in **DT** used to define size of next step devices (DEMO)

L-H transition experiments in DT

Minimize Tritium consumption

- NBI steps or ICRH ramps
- Horizontal Target only

$$P_{loss} = P_{Ohm} + P_{aux} + P_{\alpha} - dW_{plasma}/dt$$

 $P_{sep} = P_{loss} - P_{rad, bulk}$

Aim: update 2008 ITPA multi-machine power threshold (P_{loss}) scaling

 $P_{\rm ITPA-iso} = 0.049 n_{e20}^{0.72} B_{\rm T}^{0.83} S^{0.94} (2/A_{\rm eff})$

E.R. Solano et al., Nucl. Fusion **63** (2023) 112011 https://doi.org/10.1088/1741-4326/acee12

P_{LH} in 3T 2.5 MA dataset

Clear shift of $\overline{n}_{e,min}$: lowest for T, then DT, then D. Large P_{rad} at low \overline{n}_e for Tritium "+" for unsteady transitions, typical at low density

P_{LH} in 3T 2.5 MA dataset: lowest P_{aux} for T plasmas

- Easier access to H-mode in T-rich plasmas at lower density
- Let the H-mode raise the density
- To be evaluated vs. T consumption for ITER, DEMO, SPARC?

0,4

f_{GW}

0.2

P_{NBI} [MW]

8

7

3T 2.5 MA critical profiles?

7

From r/a=0.5, very similar n_e , T_e , T_i profiles just before the transition in D, DT, T

3T 2.5 MA critical profiles?

Thomson Scattering < 50 ms before L-H

From r/a=0.5, very similar n_e , T_e , T_i profiles just before the transition in D, DT, T

3T 2.5 MA critical profiles?

Thomson Scattering < 50 ms before L-H

- Core CX Ti measurements
- No T_i measurements near very edge, but T_i=T_e up to the edge seems like a reasonable assumption
- v₁ measurements available, being analysed

From r/a=0.5, very similar n_e , T_e , T_i profiles just before the transition in D, DT, T

P_{LH} in 2.4T 2 MA dataset

JET P_{1-H} threshold scaling for high density branch

quite good (unsurprising)

Delabie ITPA TC-26 (2017), Solano Nucl. Fusion 62 076026 (2022)

Emilia R. Solano | L-H transition: new results from the JET Tritium and Deuterium-Tritium campaigns | PEP ITPA, Culham | 24/10/2023 11

JET P_{L-H threshold} scaling: select high density branch

High density branch vs ITPA-iso scaling

• ITPA-iso scaling overpredicts P_{loss} and P_{sep} in Horizontal Target plasmas

High density branch vs JET TC26-iso scaling

High density branch vs (2/A_{eff})*TC-26 scaling

but shape effects...

Emilia R. Solano | L-H transition: new results from the JET Tritium and Deuterium-Tritium campaigns | PEP ITPA, Culham | 24/10/2023 16

SHAPE EFFECT on P_{LH} : v_{\perp} measurements (in Deuterium)

• In **D** no evolution of v_{\perp} profile along power ramps

C Silva, NF 2021, Solano NF 2022

Data available in **DT** and **T**

Shape dependence of P_{LH}:

Delabie IAEA 2014

- In D: highest P_{LH} for Vertical, then Corner, then HT
- v_⊥ hill in Corner, deep well in Vertical Target, shallower well in Horizontal
 Target

 No "Critical" v_⊥ shear flow before L-H
v_⊥ profile alone doesn't explain difference in P_{LH} for different shapes C Silva NF 2022

Scaling to next step devices?

- Need to investigate in detail impact of $\rm A_{eff}$ and shape on $\rm P_{LH}$
- Investigate conditions for L-H transition: kinetic profiles, v_{perp} shear? *Modelling!*

Revisit multi-machine ITPA P_{LH} scaling:

- multi-machine metal wall P_{LH} scaling, add recent JET data in H, D, DT, T
- include various mixtures (H+D, H+T)
- consider scaling of low density branch
- SIZE and its many physical implications: neutral penetration, gradient scale lengths, edge radiation, turbulence characteristics ...

Scaling of the L-H transition power threshold in metal walls 🔘

Summary

- P_{LH} studies carried out in H, D, T, DT and mixtures in JET-ILW
- Large shifts observed in $n_{e,min}$, correlated with f_{GW} for each isotope H, D, T
- In H+T mixtures, A_{eff} can be a suspect variable. *Multi-fluid modelling*
- Strong scaling of P_{Aux,min} with A_{eff} suggests T-rich plasmas for H-mode entry in next step devices.
- Critical kinetic profiles, not v_{perp}
- More work on P_{LH} scaling, shape effects

Next:

- L-H transition model test/validation
- multi-machine comparisons

Nuclear Fusion Special Issue on JET T & DT Campaign

E.R. Solano et al., Nucl. Fusion 63 (2023) 112011 https://doi.org/10.1088/1741-4326/acee12

\overline{n}_e scaling of P_{LH}? Typical L-mode profiles have $n_{e,ped}\cong\overline{n}_e$

In typical L-modes the density profile is quite flat and $\overline{n}_{e} \cong n_{e,ped}$

Line averaged edge density $\overline{n}_{e,edge}$ is an average across the pedestal, about 2/3 of \overline{n}_e

Therefore \overline{n}_e is a good variable to characterise $n_{e,ped}$

This isn't always the case

W poisoning and \overline{n}_e

Double power ramps help obtain more transitions per shot, but sometimes the 2nd one must be discarded

Emilia R. Solano | L-H transition: new results from the JET Tritium and Deuterium-Tritium campaigns | PEP ITPA, Culham | 24/10/2023

P_{LH} in 1.8T 1.7 MA dataset H, D, T, DT

Background: what we already knew

Maggi et al 2014 Nucl. Fusion **54** 023007

Delabie et al, ITPA TC-26 2017 Report Solano et al 2022 Nucl. Fusion **62** 076026

- P_{LH} in H, H+D, D shows clear shift of n_{e,min}
 - T & DT choices to reduce consumption:
 - P_{LH}(HT) 3T 2.5MA, 2.4T 2MA, 1.8T 1.7MA
 - Wide n_e scan
 - RF ramps when possible, NBI steps

L-H transition: from Low to High confinement (H-mode)

In L-mode	
2 MW NBI:	1.4 MJ
3 MW NBI:	1.5 MJ
4 MW NBI:	1.6 MJ
L-H transition:	1.66 MJ
H-mode:	
4 MW NBI:	2.3 MJ

L-H transition allows the plasma to keep heat and particles in

...

NBI heated L-H transition experiments in D-T

Horizontal Target 2.4 T 2 MA: T, D

T NBI

T ohm

TRF

D NBI

D RF

ITPA TC26

27

Similar observations on $n \mathfrak{M}_{e,min}$, lower for T.

P_{sep} lower for RF heating.

Very lucky to have an ohmic transition, at $n \mathfrak{M}_{e,min}$

Large radiation for RF heated T, even at medium density

High density branch vs n_e: all data together, mixing NBI and RF 🔘

Isotope effect on P_{LH}: **H**, **D** and **H+D** mixtures

HT (Horizontal Target) in JET-ILW

• $\bar{n}_{e,min}$ and P_{LH} are different in **H**, **D** and **H+D** mixtures

C.F. Maggi et al 2016 PPCF **54** 023007

Profiles just before transition: very similar in H and D. Isotope effect due to the need for more fuelling and/or heating to reach same conditions in H than in D *N. Bonanomi et al, NF 59 126025 (2019)*