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1 The problem

Each stellarator uses its own definition of a minor radius. For practical
purposes such as representing the stellarator’s experimental profiles, this is
fine. However, when comparing data from different stellarators (the ISS
confinement database!), this is not an unimportant issue, since the various
definitions of minor radius can vary by as much as 20%, due to the strong
deviations of the stellarator flux surfaces from a perfect torus.

Below, we summarize some of the methods to define the minor radius,
and finish by giving a recommendation for the confinement database.

2 Definition of the minor radius of a (perfect)

torus

The volume (V ) and surface (S) of any flux surface (including the LCFS)
can be evaluated with high precision, so it seems reasonable to attempt a
definition of the minor radius based on these concepts.

A perfect torus has a circular axis and circular poloidal cross sections.
The surface and volume of a perfect torus are given by:

S = 4π2Rr

V = 2π2Rr2 (1)

One can either use these relations directly to define r (by choosing a value
of R), or divide them to obtain:

r =
2V

S
(2)
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This latter definition has the advantage that it is not necessary to choose R
(which may not be straightforward in a machine with a helical axis).

The problem, however, is that the magnetic surfaces are not perfect tori,
so the question is: how can this analysis be improved to define an (effective)
radius for a non-perfect torus?

3 Definition of the minor radius of a more

general topological torus

If volume and surface are parametrized by a single parameter s, then∫ s

0
S(x)dx = V (s) (3)

The parameter s has the dimension of a radius. Therefore, one can rename
s to r without loss of generality. It follows that

dr = dV/S (4)

Integrating:

r =
∫ V

0

1

S(V ′)
dV ′ (5)

This expression requires knowledge of the relation S(V ) over the whole vol-
ume in order to determine r. Another approach is obtained by rewriting
Eq. (4):

S(r) =
dV

dr
=
dV

dS

dS

dr
(6)

so that:
S

dS/dr
=
dV

dS
(7)

Which is a local expression (not integral). However, in order to find the radius
r one needs to make an additional assumption, namely, the dependence of S
on r (or, equivalently, of V on r), as we will see below.

If one assumes that S is linear in r, or S = cr (which seems reasonable
for a toroidal surface), one immediately obtains a definition for the radius:

S

dS/dr
= r =

dV

dS
(8)
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It is not necessary to assume anything about the volume dependence, since
this is defined by Eq. 3. In contrast to Eq. (5), this definition is local.

However, it should be realized that this is not the only definition possible.
If one makes the more general assumption that S = crα, then it follows:

V =
c

α + 1
rα+1

r = α
dV

dS
(9)

Obviously, this does not exhaust the possibilities. Generally, one could set
S = f(r), which should be a monotonically increasing function of r to make
sense geometrically; however, in general, the simple linear relation between
r and dV/dS is then lost.

3.1 Side note: other parametric volumes

Eq. 9 is in fact valid for any parametric surface (of a single parameter).
For example, for a ball, one would simply have to assume that S depends
quadratically on r: S = cr2, so α = 2 and:

r = 2
dV

dS
(10)

This is consistent with the known expressions S = 4πr2 and V = 4
3
πr3 for a

ball.

4 Definitions based on poloidal cross sections

Assume we have a flux-based coordinate system (ψ, φ, θ), where ψ is the flux,
φ the toroidal cylindrical angle and θ an appropriate poloidal angle. At a
given value of φ, the cross section is:

A(ψ, φ) =
∫ 2π

0

∫ ψ

0
r(ψ′, θ, φ)dψ′dθ = 2π

∫ ψ

0
r(ψ′, φ)dψ′ (11)

where the definition of r(ψ, φ) (the mean radius of surface ψ at angle φ) is
still open. We would be interested to determine the mean of this quantity
over φ.
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Note that the circumference of the poloidal cross-section A is given by

L(ψ, φ) =
dA

dψ
= 2πr(ψ, φ) (12)

These relations inspire two numerical definitions:

• Based on the circumference: compute the circumference L(ψ, φ) for
many φ’s in order to compute the mean L(ψ) = 2πreff .

• Based on the cross section surface area: compute the area A(ψ, φ) for
many φ’s in order to compute the mean A(ψ) = πr2

eff .

We note that these definitions are based on the idea that the cross section
defined by φ = cst has some physical meaning. While this is true for toka-
maks (due to symmetry), it may not be very relevant to stellarators where
such symmetry is absent. In particular, these definitions may not be very
appropriate for Heliacs. The reason for this lack of physical significance of
poloidal cross sections is that the flux tube describing the plasma surface does
not intersect the plane φ = cst perpendicularly. Expressed mathematically:

~∇ψ · ~∇φ 6= 0 (13)

The numerical size of this inner product determines ”how good” definitions
based on poloidal cross sections are: they are fine for tokamaks (where the
r.h.s. is exactly zero), but bad for Heliacs, and meaningless for extreme stel-
larators such as Spitzer’s ”figure-eight” machine.

5 Consequences for scaling laws

One of the main reasons for discussing these issues is the comparison between
very different machines needed to make a scaling law such as the ISS scaling
of the energy confinement time. Currently, the ISS scaling law reads:

τE = ...R0.64a2.33... (14)

apart from other factors. When one replaces R and a by S and V , it it will
read something like:

τE = ...V 1.69S−1.05... (15)
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(I did this by substitutingR→ S2/V and a→ V/S; of course, this is cheating
because one would really have to recalculate the regression with proper values
of S and V to do this). This makes a lot of sense: the confinement time
increases (strongly) with volume (energy content!) and decreases (linearly!)
with surface (energy flux out of the plasma!).

It would be very easy to get used to scaling laws based on S and V instead
of R and a, because that makes good sense, conceptually.

6 Conclusions

The definition of an effective radius is highly ambiguous for stellarators in
general, and for heliacs in particular. From the above analysis, we would be
inclined to give preference to a definition such as r = dV/dS, but we note
that even this definition is not free from ambiguities. The only unambiguous
definition is perhaps Eq. (5), but it is slightly awkward to manage since it
requires knowledge of the full equilibrium (assuming nested flux surfaces).

We would like to suggest that the stellarator confinement data base should
not only contain an effective radius r (while providing documentation on the
assumptions underlying the definition of r), but also (at least) the values
S (surface) and V (volume) of the (last) flux surfaces, whose definition is
unambiguous. Note that one may also want to store information about the
profiles of S(ψ) and V (ψ), or at least dV/dS at the LCFS.

An important recommendation would be to drop the custom, inherited
from tokamaks, to make scaling laws based on an effective radius, since that
could easily introduce definition errors as large as 20% or more between dif-
ferent machines. We note that the ’size’ of a toroidal object is given by
(at least) two parameters, due to the fact that a toroidal object is doubly
connected: e.g., {R, r}, or, alternatively, {S, V }. In view of the above con-
siderations, we believe that multi-machine scalings should be made on the
basis of S and V , and not on the basis of the more ambiguous r and R.
Possibly, such scalings might work better than the direct scalings with r and
R, due to the absence of ambiguities in the definitions of S and V . It may
also make physical sense, since the energy contained in the plasma should be
proportional to V , while the energy loss rate should be proportional to S (in
the absence of anomalous transport).

5


