

50th EPS Conference | 11th July

Turbulent transport at the pedestal top of small-ELM plasmas at JET: key mechanisms and their impact

M. Dicorato

M. Muraglia, Y. Camenen, J. Garcia, X. Garbet, D. R. Hatch, G. Merlo, E. de la Luna, Ž. Štancar, L. Garzotti, V.K. Zotta, F. Rimini, D. Frigione, and JET Contributors

NANYANG

UNIVERSIT

SINGAPORE

TECHNOLOGICAL

This work has been carried out within the framework of the EUROfusion Consortium, funded by the European Union via the Euratom Research and Training Programme (Grant Agreement No 101052200 — EUROfusion). Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Commission. Neither the European Union nor the European Commission can be held responsible for them.

Pedestal in H-mode plasma regime

H-mode plasma regime [Wagner *et al.* PRL1982]

- Formation of an edge transport barrier leading to a "**pedestal**"
- II. Edge dynamics regulated by edge-localized modes (**ELMs**) determining release of energy and particles [Zohm PPCF1996]

Pedestal structure set by different *time-scales* process

[Snyder *et al*. NF2011, Groebner and Saarelma PPCF2023]

- **MHD stability for ELMs onset**
- II. Transport mechanisms [Kotschenreuther *et al*. NF2019]
	- → Instability: **EM** kinetic-ballooning modes (**KBM**), micro-tearing modes (**MTM**);
		- **ES** ion&electron-temperature gradient (**ITG**/**ETG**) modes, trapped electron modes (**TEM**) [Hatch *et al*. NF2015, NF2016, NF2017, NF2019]

 \rightarrow Turbulence saturation: $E \times B$ shearing (equilibrium and self-regulation), electromagnetic effects [Scott PPCF2007], …

Pedestal structure set by different *time-scales* process

[Snyder *et al*. NF2011, Groebner and Saarelma PPCF2023]

- **MHD stability for ELMs onset**
- II. Transport mechanisms [Kotschenreuther *et al*. NF2019]
	- → Instability: **EM** kinetic-ballooning modes (**KBM**), micro-tearing modes (**MTM**);
		- **ES** ion&electron-temperature gradient (**ITG**/**ETG**) modes, trapped electron modes (**TEM**) [Hatch *et al*. NF2015, NF2016, NF2017, NF2019]

 \rightarrow Turbulence saturation: $E \times B$ shearing (equilibrium and self-regulation), electromagnetic effects [Scott PPCF2007], …

In this work, **JET-Be/W** plasmas in *different* **ELMy** regimes with *different* **pedestal structures** [Garcia *et al*. PoP2022] ⇒ **I.** Drastic change in **stability** ⇒ **II. Saturation mechanisms** identified

Method: local gyrokinetic simulations **GENE** [Jenko *et al*. PoP2000]

Experimental setup [Garcia *et al*. PoP2022, de la Luna *et al.* submitted]

Baseline scenario: $q_{95} = 3.2$, H_{98} ~1

Deuterium plasmas with different P_{NBI} and

 $I_p = 3 MA B_t = 2.8 T P_{ICRH} = 4 MW$

- **Type-I ELMs #97395 –** $P_{tot} = 32 MW$ → **with** *low* gas puffing
- **Small-ELMs #94442 –** $P_{tot} = 21 \, MW$ \rightarrow without gas puffing
	- \rightarrow Particle source key parameter to access **Baseline small-ELMs regimes**

Type-I ELMs: #97395 | small-ELMs: #94442

Type-I ELMs: #97395 | small-ELMs: #94442

• **Density**

→ **type-I ELMs** has higher pedestal w.r.t. **small-ELMs** with wider and lower pedestals

Type-I ELMs: #97395 | small-ELMs: #94442

• **Density**

→ **type-I ELMs** has higher pedestal w.r.t. **small-ELMs** with wider and lower pedestals

• **Temperature**

 \rightarrow electron pedestals are similar; ion pedestals are higher in **small-ELMs** regime

Baseline **JET-Be/W** shots in *different* **ELMy** regimes → *Different* **pedestal structures**

Type-I ELMs: #97395 | small-ELMs: #94442

• **Density**

→ **type-I ELMs** has higher pedestal w.r.t. **small-ELMs** with wider and lower pedestals

• **Temperature**

 \rightarrow electron pedestals are similar; ion pedestals are higher in **small-ELMs** regime

Baseline **JET-Be/W** shots in *different* **ELMy** regimes → *Different* **pedestal structures**

Small-ELMs – Non-linear Electromagnetic stabilization Ttop

Electrostatic vs. **Electromagnetic**

- **Equilibrium** $\gamma_{E\times B}$: toroidal rotation + ∇p \rightarrow nominal: $\gamma_{E\times B} = 0.45$
- Heat flux, mainly $E \times B$ advection

Small-ELMs – Non-linear Electromagnetic stabilization Ttop

Electrostatic vs. **Electromagnetic**

- **Equilibrium** $\gamma_{E\times B}$: toroidal rotation + ∇p \rightarrow nominal: $\gamma_{E\times B} = 0.45$
- Heat flux, mainly $E \times B$ advection

Reducing the equilibrium $\gamma_{E\times B}$ by 30% ⇒ **ES** increases

Small-ELMs – Non-linear Electromagnetic stabilization Ttop

Electrostatic vs. **Electromagnetic**

- **Equilibrium** $\gamma_{E\times B}$: toroidal rotation + ∇p \rightarrow nominal: $\gamma_{E\times B} = 0.45$
- Heat flux, mainly $E \times B$ advection

Reducing the equilibrium $\gamma_{E\times B}$ by 30% ⇒ **ES** increases ⇒ **EM decreases!**

Interplay $\gamma_{E\times B}$ + EM stabilization ⇒ *decisive* for reaching experimental transport level

Small-ELMs – Electromagnetic enhanced Zonal Flows

- Zonal flows (ZFs) $\phi_{k_x,k_y=0}$ → Turbulence **self-regulation** mechanism
- Associated **shearing rate** $\omega_{ZF}(k_{\rm x})=\langle -k_{\rm x}^2|\phi_{k_{\rm x},k_{\rm y}=0}|\rangle_t$

Electrostatic vs. **Electromagnetic** → Large scale **ZFs** activity **enhanced** in **EM** simulation ⇒ suggested as **mechanism** contributing to **EM stabilization**

Small-ELMs – Heat fluxes spectra ES vs. EM

Electron and **ion** heat flux spectra

- **ES** heat flux peak at $k_v \rho_i \sim 0.4$
- **EM** heat flux peak *slightly* shifted to lower $k_{\nu}\rho_i$

Electrostatic vs. **Electromagnetic** ⇒ *strong* flux reduction starting at $k_y \rho_i \sim 0.2$

• Stability: differences at **JET-Be/W**

 → **type-I ELMs: KBM** unstable → **small-ELMs: hybrid ITG-TEM** (w/o KBM) [Dicorato *et al*. JPCS2022]

• Ion-scale turbulence: **saturation level** determined by **electromagnetic stabilization + equilibrium** $E \times B$ **shearing [Dicorato** *et al.* **to be submitted PPCF]**

⇒ suggested as leading mechanisms regulating ion temperature

 \rightarrow *Opposite* role of equilibrium $\bm{E} \times \bm{B}$ shearing in electrostatic and electromagnetic turbulence regime

Perspective work: nonlinear electromagnetic stabilization, global and multi-scale simulations

Thank you!

M. Dicorato

mattia.dicorato@univ-amu.fr

150

This work has been carried out within the framework of the EUROfusion Consortium, funded by the European Union via the Euratom Research and Training Programme (Grant Agreement No 101052200 — EUROfusion). Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Commission. Neither the European Union nor the European Commission can be held responsible for them.

Authors list and affiliations

M. Dicorato^{1,2}, M. Muraglia¹, Y. Camenen¹, J. Garcia², X. Garbet^{2,3}, D. R. Hatch⁴, G. Merlo⁵, E. de la Luna⁶, Ž. Štancar⁷, L. Garzotti⁷, V.K. Zotta⁸, F. Rimini⁷, D. Frigione⁹, and JET Contributors^{*}

¹Aix-Marseille Université, CNRS, PIIM UMR7345, Marseille, France

²CEA, IRFM, Saint-Paul-lez-Durance, F-13108, France

³School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore 4 Institute for Fusion Studies, University of Texas at Austin, Austin, TX 78712, USA

⁵Oden Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, TX, 78712, USA

⁶Laboratorio Nacional de Fusión, CIEMAT, 28040 Madrid, Spain

⁷United Kingdom Atomic Energy Authority, Culham Science Centre, Abingdon OX14 3DB, UK ⁸Department of Astronautical, Electrical and Energy Engineering, Sapienza University of Rome, Via Eudossiana 18, Rome, 00184, Italy

⁹University of Rome Tor Vergata, Via del Politecnico 1, Rome, 00133, Italy

*See the author list of "Overview of T and D-T results in JET with ITER-like wall" by C.F. Maggi et al to be published in Nuclear Fusion special Issue: Overview and Summary Papers from the 29th Fusion Energy Conference (London, UK, 16–21 October 2023)

Simulations Input Parameters at

Table 1: $1/L_n = d(\log(n))/d\rho_{\text{tor}}, 1/L_{T_i} = d(\log(T))/d\rho_{\text{tor}}$

• **Characterization of turbulent transport in different plasma regimes**

 \Rightarrow different pedestal turbulence due to:

- $-$ different $T_e/T_i \rightarrow$ destabilizing parameter for **ITG**
- $-$ **Higher** logarithmic density gradient in **BSE** (due to lower density) \rightarrow driving the **TEM**
- - **Different** $\beta_e \rightarrow$ electromagnetic effects

Micro-instabilities in JET pedestals (1/2)

- <u>Ion-scale</u> up to $k_{\gamma}\rho_i$ ~1.5: hybrid **ITG-KBM** and **KBM**
- Electron-scale: toroidal and slab **ETG** [Parisi *et al*. NF2020, NF2022]

Micro-instabilities in JET pedestals (2/2)

<u>lon-scale</u> up to $k_{y}\rho_{i}$ ~1.5: hybrid **TEM-ITG**

 \rightarrow **no KBM** due to lower pressure \Rightarrow lower β_e [Dicorato *et al.* JPCS2022]

• Electron-scale: toroidal and slab **ETG**

Electromagnetic effects (nominal β_e) determine different turbulence regime \Rightarrow low- k_x low- k_y modes *strongly* enhanced

Small-ELM – Turbulent Fluxes: ES, $E \times B$ **shear**

Small-ELM – Turbulent Fluxes: ES, $E \times B$ **shear**

