

50th EPS Conference | 11th July

Turbulent transport at the pedestal top of small-ELM plasmas at JET: key mechanisms and their impact

M. Dicorato

M. Muraglia, Y. Camenen, J. Garcia, X. Garbet, D. R. Hatch, G. Merlo, E. de la Luna, Ž. Štancar, L. Garzotti, V.K. Zotta, F. Rimini, D. Frigione, and JET Contributors

This work has been carried out within the framework of the EUROfusion Consortium, funded by the European Union via the Euratom Research and Training Programme (Grant Agreement No 101052200 — EUROfusion). Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Commission. Neither the European Union nor the European Commission can be held responsible for them.

Pedestal in H-mode plasma regime

H-mode plasma regime [Wagner et al. PRL1982]

- Formation of an <u>edge transport barrier</u> leading to a "pedestal"
- II. Edge dynamics regulated by <u>edge-localized modes</u> (ELMs) determining release of energy and particles [Zohm PPCF1996]

Pedestal structure set by different time-scales process

[Snyder *et al.* NF2011, Groebner and Saarelma PPCF2023]

- I. MHD stability for ELMs onset
- II. Transport mechanisms [Kotschenreuther et al. NF2019]
 - \rightarrow <u>Instability</u>: **EM** kinetic-ballooning modes (**KBM**), micro-tearing modes (**MTM**);
 - ES ion&electron-temperature gradient (ITG/ETG) modes, trappedelectron modes (TEM) [Hatch *et al.* NF2015, NF2016, NF2017, NF2019]

→ <u>Turbulence saturation</u>: $E \times B$ shearing (equilibrium and self-regulation), electromagnetic effects [Scott PPCF2007], ...

Pedestal structure set by different time-scales process

[Snyder *et al*. NF2011, Groebner and Saarelma PPCF2023]

- I. MHD stability for ELMs onset
- II. Transport mechanisms [Kotschenreuther et al. NF2019]
 - \rightarrow <u>Instability</u>: **EM** kinetic-ballooning modes (**KBM**), micro-tearing modes (**MTM**);
 - ES ion&electron-temperature gradient (ITG/ETG) modes, trappedelectron modes (TEM) [Hatch *et al.* NF2015, NF2016, NF2017, NF2019]

 \rightarrow <u>Turbulence saturation</u>: $E \times B$ shearing (equilibrium and self-regulation), electromagnetic effects [Scott PPCF2007], ...

In this work, JET-Be/W plasmas in *different* ELMy regimes with *different* pedestal structures [Garcia *et al.* PoP2022] \Rightarrow I. Drastic change in stability \Rightarrow II. Saturation mechanisms identified

Method: <u>local</u> gyrokinetic simulations **GENE** [Jenko *et al*. PoP2000]

Experimental setup [Garcia et al. PoP2022, de la Luna et al. submitted]

Baseline scenario: $q_{95} = 3.2, H_{98} \sim 1$

Deuterium plasmas with different P_{NBI} and

 $I_p = 3 MA B_t = 2.8 T P_{ICRH} = 4 MW$

- **Type-I ELMs #97395** $P_{tot} = 32 MW$ \rightarrow with *low* gas puffing
- Small-ELMs #94442 $P_{tot} = 21 MW$ \rightarrow without gas puffing
 - → <u>Particle source</u> key parameter to access Baseline small-ELMs regimes

Type-I ELMs: #97395 | small-ELMs: #94442

M. Dicorato | 50th EPS Conference | 11/07/2024 | Page 5/10

Type-I ELMs: #97395 | small-ELMs: #94442

Density

 \rightarrow type-I ELMs has higher pedestal w.r.t. small-ELMs with wider and lower pedestals

M. Dicorato | 50th EPS Conference | 11/07/2024 | Page 5/10

Type-I ELMs: #97395 | small-ELMs: #94442

- Density
- → **type-I ELMs** has higher pedestal w.r.t. **small-ELMs** with wider and lower pedestals

Temperature

→ electron pedestals are similar; ion pedestals are higher in **small-ELMs** regime

Baseline JET-Be/W shots in *different* ELMy regimes → *Different* pedestal structures

M. Dicorato | 50th EPS Conference | 11/07/2024 | Page 5/10

Type-I ELMs: #97395 | small-ELMs: #94442

- Density
- → **type-I ELMs** has higher pedestal w.r.t. **small-ELMs** with wider and lower pedestals
- Temperature

→ electron pedestals are similar; ion pedestals are higher in **small-ELMs** regime

Baseline JET-Be/W shots in *different* ELMy regimes → *Different* pedestal structures

M. Dicorato | 50th EPS Conference | 11/07/2024 | Page 5/10

M. Dicorato | 50th EPS Conference | 11/07/2024 | Page 6/10

M. Dicorato | 50th EPS Conference | 11/07/2024 | Page 6/10

Small-ELMs – Non-linear Electromagnetic stabilization ^{*r*top}

Electrostatic vs. Electromagnetic

- Equilibrium $\gamma_{E \times B}$: toroidal rotation + ∇p \rightarrow nominal: $\gamma_{E \times B} = 0.45$
- Heat flux, mainly $E \times B$ advection

M. Dicorato | 50th EPS Conference | 11/07/2024 | Page 7/10

Small-ELMs – Non-linear Electromagnetic stabilization ^{*r*top}

Electrostatic vs. Electromagnetic

- Equilibrium $\gamma_{E \times B}$: toroidal rotation + ∇p \rightarrow nominal: $\gamma_{E \times B} = 0.45$
- Heat flux, mainly $E \times B$ advection

Reducing the equilibrium $\gamma_{E \times B}$ by 30% \Rightarrow ES increases

Small-ELMs – Non-linear Electromagnetic stabilization ^{*r*top}

Electrostatic vs. Electromagnetic

- Equilibrium $\gamma_{E \times B}$: toroidal rotation + ∇p \rightarrow nominal: $\gamma_{E \times B} = 0.45$
- Heat flux, mainly $E \times B$ advection

Reducing the equilibrium $\gamma_{E \times B}$ by 30% \Rightarrow ES increases \Rightarrow EM decreases!

Interplay $\gamma_{E \times B}$ + EM stabilization \Rightarrow decisive for reaching experimental transport level

Small-ELMs – Electromagnetic enhanced Zonal Flows

- Zonal flows (ZFs) $\phi_{k_x,k_y=0}$ \rightarrow Turbulence self-regulation mechanism
- Associated shearing rate $\omega_{ZF}(k_x) = \langle -k_x^2 | \phi_{k_x,k_y=0} | \rangle_t$

Electrostatic vs. Electromagnetic
→ Large scale ZFs activity enhanced in EM simulation
⇒ suggested as mechanism contributing to EM stabilization

Small-ELMs – Heat fluxes spectra ES vs. EM

Electron and ion heat flux spectra

- **ES** heat flux peak at $k_y \rho_i \sim 0.4$
- **EM** heat flux peak *slightly* shifted to lower $k_y \rho_i$

Electrostatic vs. Electromagnetic \Rightarrow strong flux reduction starting at $k_y \rho_i \sim 0.2$

M. Dicorato | 50th EPS Conference | 11/07/2024 | Page 9/10

• <u>Stability:</u> differences at **JET-Be/W**

→ type-I ELMs: KBM unstable [Dicorato *et al.* JPCS2022] → small-ELMs: hybrid ITG-TEM (w/o KBM)

 <u>Ion-scale turbulence</u>: saturation level determined by electromagnetic stabilization + equilibrium E × B shearing [Dicorato et al. to be submitted PPCF]

⇒ suggested as leading mechanisms regulating ion temperature

 \rightarrow Opposite role of equilibrium $E \times B$ shearing in electrostatic and electromagnetic turbulence regime

Perspective work: nonlinear electromagnetic stabilization, global and multi-scale simulations

Thank you!

M. Dicorato

mattia.dicorato@univ-amu.fr

IF7

This work has been carried out within the framework of the EUROfusion Consortium, funded by the European Union via the Euratom Research and Training Programme (Grant Agreement No 101052200 — EUROfusion). Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Commission. Neither the European Union nor the European Commission can be held responsible for them.

Authors list and affiliations

<u>M. Dicorato^{1,2}</u>, M. Muraglia¹, Y. Camenen¹, J. Garcia², X. Garbet^{2,3}, D. R. Hatch⁴, G. Merlo⁵, E. de la Luna⁶, Ž. Štancar⁷, L. Garzotti⁷, V.K. Zotta⁸, F. Rimini⁷, D. Frigione⁹, and JET Contributors^{*}

¹Aix-Marseille Université, CNRS, PIIM UMR7345, Marseille, France

²CEA, IRFM, Saint-Paul-lez-Durance, F-13108, France

³School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore ⁴Institute for Fusion Studies, University of Texas at Austin, Austin, TX 78712, USA

⁵Oden Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, TX, 78712, USA

⁶Laboratorio Nacional de Fusión, CIEMAT, 28040 Madrid, Spain

⁷United Kingdom Atomic Energy Authority, Culham Science Centre, Abingdon OX14 3DB, UK ⁸Department of Astronautical, Electrical and Energy Engineering, Sapienza University of Rome, Via Eudossiana 18, Rome, 00184, Italy

⁹University of Rome Tor Vergata, Via del Politecnico 1, Rome, 00133, Italy

*See the author list of "Overview of T and D-T results in JET with ITER-like wall" by C.F. Maggi et al to be published in Nuclear Fusion special Issue: Overview and Summary Papers from the 29th Fusion Energy Conference (London, UK, 16–21 October 2023)

Simulations Input Parameters at r_{top}

	$\mid ho_{ m tor}$	T_e/T_i	$n_{ m D}/n_e$	$Z_{\rm eff}$	$1/L_n$	$1/L_{T_i}$	$1/L_{T_e}$	q	\hat{s}	eta_e
#97395	0.93	0.93	0.92	1.4	2	10	10	3.1	2.0	3×10^{-3}
#96994	0.91	0.52	0.88	2.4	5.7	6.2	15	3.0	1.63	3×10^{-3}
#94442	0.92	0.44	0.88	3.1	6.2	8.8	15	3.1	2.21	1.8×10^{-3}

Table 1: $1/L_n = d(\log(n)) / d\rho_{tor}, 1/L_{T_i} = d(\log(T)) / d\rho_{tor}$

Characterization of turbulent transport in different plasma regimes

 \Rightarrow different <u>pedestal turbulence</u> due to:

- different $T_e/T_i \rightarrow$ destabilizing parameter for **ITG**
- Higher logarithmic density gradient in BSE (due to lower density) → driving the TEM
- **Different** $\beta_e \rightarrow$ electromagnetic effects

Micro-instabilities in JET pedestals (1/2)

<i>r</i> in	l top	Fout					
0.91	0.93	0.94					
$\gamma =$ growth rate $\omega =$ real frequency $k_y \rho_i =$ binormal wave- number							

- <u>lon-scale</u> up to $k_y \rho_i \sim 1.5$: hybrid **ITG-KBM** and **KBM**
- Electron-scale: toroidal and slab ETG [Parisi et al. NF2020, NF2022]

Micro-instabilities in JET pedestals (2/2)

• <u>lon-scale</u> up to $k_y \rho_i \sim 1.5$: hybrid **TEM-ITG**

 \rightarrow **no KBM** due to **lower pressure** \Rightarrow lower β_e [Dicorato *et al.* JPCS2022]

<u>Electron-scale</u>: toroidal and slab ETG

Electromagnetic effects (nominal β_e) determine different **turbulence regime** $\Rightarrow \text{low-}k_x \text{ low-}k_y \text{ modes } strongly \text{ enhanced}$

Small-ELM – Turbulent Fluxes: ES, $E \times B$ shear

M. Dicorato | 50th EPS Conference | 11/07/2024 | Page 14/9

Small-ELM – Turbulent Fluxes: ES, $E \times B$ shear

