

Magnetic phase transition and confinement regimes

Emilia R. Solano^{1,2}, Richard D. Hazeltine³

¹ Laboratorio Nacional de Fusión, CIEMAT, Madrid, Spain ²JET EFDA CSU

³ Institute for Fusion Studies, Univ. of Texas at Austin, Austin, USA

Acknowledgements: E. Fable (IPP Garching), P. McCarthy (U.C. Cork, Ireland)

15th European Fusion Theory Conference Oxford, United Kingdom 23rd-26th September 2013

- Since the discovery of the H-mode, many models of the L-H transition have been proposed
- The now conventional model is based on electrostatic turbulent vortices shredded by rotation shear. It is highly developed, can include sophisticated predator-prey model, it is now beginning to move towards electromagnetic consequences of electrostatic fluctuations...
- It is a very attractive model to many, but then I saw this movie of an L-H transition in MAST

http://www.ccfe.ac.uk/videos.aspx?currVideo=24&currCateg=0

(L-mode 10-18 s, H-mode later)

and I started thinking about phase transitions.

One of the better studied phase transitions in physics is the magnetic phase transition.

So that got me thinking some more...

Microturbulence MHD $\gamma > 0$ $\gamma > 0$ electrostatic electro-magnetic drift velocity V_{thermal} or V_{Alfvén} Sophisticated, Linear models non-linear models **Energy principle** λ~ (1-10) ρ_s $\lambda \sim p/p'$ or $\lambda \sim a$

- Plasma overall magnetisation (cylindrical tokamak approximation)
- Magnetisation of "tubes" (field aligned pressure perturbations)
- Motion of magnetised tubes in magnetised plasma (B_z gradient)
- Effect on profiles
- Connections to interchange stability theory
- Experimentally testable criterion
- Data!

References:

- E. R. Solano, Plasma Phys. Control. Fusion 46 L7 (2004)
- E. R. Solano & R. D. Hazeltine Nucl. Fusion 52 114017 (2012)

Plasma Equilibrium

Plasma force balance:

$$\begin{aligned} \nabla \mathbf{p} &= \mathbf{j} \times \mathbf{B} = \mathbf{j}_{\zeta} \times \mathbf{B}_{\theta} + \mathbf{j}_{\theta} \times \mathbf{B}_{\zeta} \\ \mathbf{p'} &\equiv \frac{dp}{d\Psi} \\ \mathbf{j}_{\zeta} &= -\left(\mathbf{R} \, \mathbf{p'} + \mathbf{FF'}/\left(\mu_0 \, \mathbf{R}\right)\right) \\ \mu_0 \mathbf{j}_{\theta} &= -\mathbf{F'} \, \mathbf{B}_{\theta} \quad , \quad \mathbf{F}(\Psi) = \mathbf{R} \mathbf{B}_{\zeta} \end{aligned}$$

In cylindrical approximation :

$$\frac{d}{dr}\left(p + \frac{B_z^2 + B_\theta^2}{2\mu_0}\right) = -\frac{B_\theta^2}{r\mu_0} \qquad j_z = -\left(\frac{R_0 p' + FF'}{(\mu_0 R_0)}\right)$$
$$\mu_0 j_\theta = -\frac{dB_z}{dr}$$

Plasma magnetization of a "cylindrical" tokamak

 B_{z}

Integrating cylindrical force balance:

 $(\beta_{\theta}$ -1) is related to normalised average plasma magnetisation

The tokamak plasma is a magnet.

$$\left\langle \mathrm{B_{z}}\right\rangle - \mathrm{B_{z}^{vac}} \cong \mu_{0} \left(\mathrm{B_{\theta a}^{2}} / 2\mu_{0} - \int_{0}^{a} \mathrm{pdS}\right) / \mathrm{B_{z}^{vac}}$$

the difference between poloidal magnetic and kinetic pressure determines if it is a para-magnet or a dia-magnet

Paramagnets

increase the background magnetic field move towards high field regions

Diamagnets

decrease the background magnetic field move towards low field regions

so far I have just reviewed well known facts

Diamagnetic levitation

150 mm

-410 mm-

A frog (diamagnetic) dropped in a strong magnetic field levitates because it tries to get away from the high field. It moves towards the lower field, arranged to be upwards.

Magnetised plasma element

The poloidal current density around a tokamak plasma is responsible for plasma magnetisation: the difference between the externally applied toroidal field and the local toroidal field inside the plasma

Not conventional current "filaments", with parallel current density Next consider a fieldaligned plasma element with a pressure perturbation relative to the background plasma pressure.

What is its magnetisation?

Diamagnetic current: if inside the tube there is a pressure hill (more pressure than in the background plasma), the associated perpendicular current reduces B_z : diamagnetism

В

В

n

ρ

Ñ

Ñ

Diamagnetic current:

if inside the tube there is a pressure hill, the associated perpendicular current reduces B_z : diamagnetism

Paramagnetic current:

if inside the tube there is a pressure hole (less pressure than in the background plasma), the associated perpendicular current increases B_z : paramagnetism

В

n

ρ

Ñ

Ñ

Diamagnetic current:

if inside the tube there is a pressure hill, the associated perpendicular current reduces B_z : diamagnetism

Paramagnetic current:

if inside the tube there is a pressure hole, the associated perpendicular current increases B_z : paramagnetism

Magnetization of the blob:

$$\begin{split} \nabla \times \tilde{\mathbf{M}} &= \mu_0 \, \frac{\mathbf{b} \times \nabla \tilde{\mathbf{p}}}{\mathbf{B}} = -\frac{d\tilde{\mathbf{M}}}{dr} \, \hat{\mathbf{r}} \\ \tilde{\mathbf{M}} &= \frac{1}{\lambda_{\parallel}} \int_0^{\rho} \frac{\mathbf{b}}{\mathbf{B}} \frac{\partial \tilde{\mathbf{p}}(\rho')}{\partial \rho'} \lambda_{\parallel} \, d\rho' \approx -\frac{\tilde{\mathbf{p}}}{\overline{\mathbf{B}}} \, \mathbf{b} \qquad \begin{cases} < 0, \, \text{dia} \\ > 0, \, \text{para} \end{cases} \end{split}$$

Movement of magnetized object in field gradient

(see Jackson)

the hot tube (diamagnetic) seeks low field

averaged dB_{z}/dr controls motion of magnetised plasma tubes: Anti-potential leads to *magnetic phase separation*

Paramagnetic plasma: L-mode

Diamagnetic plasma: H-mode

Laboratorio Nacional

Magnetic Boundary: phase transition

 ∇p increases somewhere, creating diamagnetic region at plasma edge.

Magnetic Boundary: phase transition

p(r) $B_z(r)$ r

At a magnetic phase boundary blobs of the same type accumulate

diamagnetic blobs (heat) seek wells

paramagnetic blobs seek hilltops

With multiple blobs moving, p and B_z profiles evolve

Magnetic Boundary: phase transition

Pressure gradient increases in diamagnetic region Decreases in paramagnetic region

Magnetization, of both signs, increases.

Phase transition is self-reinforcing.

Pressure pedestal forms, grows.

For now, consider what the magnetisation force does, disregard other transport mechanisms

Pedestal formation at magnetisation boundary

Assume dashed $B_z(r)$, p(r) initial profiles Ideal MHD with <u>magnetization force</u>

$$\begin{split} \overline{n}_{V} m_{i} \frac{dv_{r}}{dt} \bigg|_{M} &= \widetilde{M}_{\zeta} \frac{d}{dr} \overline{B}_{0z} \\ \frac{3}{2} \frac{\partial p}{\partial t} \bigg|_{M} &= -\frac{d}{dr} (\widetilde{p} v_{r}) \\ \frac{\partial B_{z}}{\partial t} \bigg|_{M} &= \frac{d}{dr} (\widetilde{v}_{r} \overline{B}_{0z}) \end{split}$$

Integrating one temporal step Δt pressure steepens in diamagnetic regions increases diamagnetism flattens in paramagnetic regions, increases paramagnetism

Magnetic phase separation drives pedestal formation

Emilia R. Solano "Magnetic Phase Transitions & Confinement Regimes" 15th Eur. Fus. Th. Conf., Oxford, 24/09/2013 21/29

Recap and applicability conditions

- plasma tubes with an excess or defect of pressure are convected radially, depending on the plasma magnetisation.
- phase separation occurs at the flux surface in which j_{α} changes sign.

Under what conditions?

- The seed pressure perturbation is strong enough to protrude above or below the background pressure profile.
- plasma elements must be long enough to average out the 1/R variation of the vacuum field: λ_{\parallel} > qR. Otherwise conventional, ballooning-like transport would drive short diamagnets towards low R.
- Collisionality/resistivity: the temperature must be high enough for particles to sample LFS and HFS before being scattered out of the tube.
- Edge pressure must be high enough to allow negative perturbations as well as positive.

- So far we have treated the plasma tubes as "test particles" with a magnetic moment
- ignored geometrical magnetisation from j₁₁
- No evolution equation for tube magnetisation.
- the magnetic interaction between plasma elements and bulk plasma is quite complex, and our model very simple (too simple?)
- We hope that a more detailed calculation, up to second order on the spatial variation of F=RB_{tor}, can be carried out. Kind of neoclassical magnetisation, instead of classical
- Much harder to do ...

Emilia R. Solano "Magnetic Phase Transitions & Confinement Regimes" 15th Eur. Fus. Th. Conf., Oxford, 24/09/2013 24/29

- present when a radial force acts equally on electrons and ions
- equivalent to the Rayleigh-Taylor instability in a fluid.
- magnetization gradient acting on magnetized plasma blobs replace "gravitational field" or "curvature".

Magnetization interchange

Magnetization interchange growth faster for high magnetisation, strong seed, low field & mass

¹M.N. Rosenbluth and C.L. Longmire, Annals of Physics, Volume 1, Issue 2, May 1957,120

Suydam criterion for interchange instability

B. R. Suydam, Proc. 2nd UN Conf. on Peaceful Uses of Atomic Energy, Geneva, 1958.

 $\beta' \left(\frac{Rq}{r_{o}}\right)^{2} \left|\frac{B^{2}\kappa_{r}}{\mu_{o}}\right| > \frac{q'^{2}}{4a^{2}} \quad \text{magnetic shear opposes interchange of tubes} \\ \text{driven by cylindrical curvature and } \nabla\beta$

Generalization: add magnetization force to cylindrical curvature

$$\beta' \left(\frac{Rq}{r_{s}}\right)^{2} \left[\frac{B^{2}\kappa_{r}}{\mu_{0}} + \tilde{M}_{z}\frac{dB_{0z}}{dr}\right] > \frac{q'^{2}}{4q^{2}}$$

In magnetically mixed states $\tilde{M}_z \frac{dB_{0z}}{dr} < 0$ magnetisation force adds to curvature, instability, until the magnetic shear q' or the variation of dB_{z}/dr changes.

As heating is applied, low pressure paramagnetic plasmas have degraded confinement, driven by low ∇p

When sufficient heating is applied, ∇p grows until zero magnetization is obtained somewhere inside the plasma: $j_{\theta} = 0$

$$\nabla \mathbf{p} = \mathbf{j}_{\zeta} \times \mathbf{B}_{\theta} + \mathbf{j}_{\theta} \times \mathbf{B}_{\zeta} = 0$$

Estimate critical pressure gradient as

$$\frac{\mathrm{d}p}{\mathrm{d}r} = \mathbf{j}_{\zeta} \mathbf{B}_{\theta} = \mathbf{E}_{\mathrm{loop}} \eta_{\mathrm{Spitzer}} \mathbf{B}_{\theta}$$

Need database of typical ∇p , loop voltage, resistivity and B_{θ} to test predictions *or measurements of* j_{θ}

Explaining T_e threshold for L-H transition via
$$\eta_{Spitzer}$$
?
and associated pressure gradient (β_{θ}) threshold

Emilia R. Solano "Magnetic Phase Transitions & Confinement Regimes" 15th Eur. Fus. Th. Conf., Oxford, 24/09/2013 26/29

(10×) \mathbf{j}_{θ} zero crossing at L→H transition

P. J. McCarthy, P4.115, 40th EPS Conference on Plasma Physics, Espoo, 2013

Summary statistics (ms) for 10 discharges				
TIME DELAY	Mean	Std Dev	Min	Max
$t_{j_{\theta}=0} \rightarrow t_{\rm L-H}$	3	7	-11	15

Experimental evidence? AUG II

In a slow L-H transition followed by "type III" ELMs

But at least one counter example has been found in a slow transition (still unpublished). More analysis needed, as well as more refined model.

aboratorio.

Nacional Eusión

Summary and comments

- First-principles model of plasma magnetization and magnetic phase transition as the basis for triggering confinement transitions
- The magnetic state of the plasma determines convective motion of high and low pressure tubes.
- Paramagnetic plasma regions attract cold tubes, become more paramagnetic.
- Diamagnetic plasma regions attract hot tubes, becoming more diamagnetic.
- A pedestal structure builds up in the magnetic phase boundary.
- Magnetic boundary defines critical magnetization: $\mathbf{j}_{\theta} = 0 \Leftrightarrow \nabla p = \mathbf{j}_{\zeta} \times \mathbf{B}_{\theta}$
- Magnetization force drives the magnetic interchange mechanism in closed field line region, similar to curvature interchange in SOL.