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Inspiration and motivation Omw.ﬂ

 Since the discovery of the H-mode, many models of the L-H transition have
been proposed

* The now conventional model is based on electrostatic turbulent vortices
shredded by rotation shear. It is highly developed, can include sophisticated
predator-prey model, it is now beginning to move towards electromagnetic
consequences of electrostatic fluctuations...

* It is a very attractive model to many, but then | saw this movie of an L-H
transition in MAST

http://www.ccfe.ac.uk/videos.aspx?currVideo=24&currCateg=0
(L-mode 10-18 s, H-mode later)

and | started thinking about phase transitions.

One of the better studied phase transitions in physics
is the magnetic phase transition.

So that got me thinking some more...
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non-linear models .
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» Plasma overall magnetisation (cylindrical tokamak approximation)
» Magnetisation of “tubes” (field aligned pressure perturbations)

* Motion of magnetised tubes in magnetised plasma (B, gradient)
 Effect on profiles

« Connections to interchange stability theory

« Experimentally testable criterion

e Datal

References:

E. R. Solano, Plasma Phys. Control. Fusion 46 L7 (2004)
E. R. Solano & R. D. Hazeltine Nucl. Fusion 52 114017 (2012)
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Plasma Equilibrium

Plasma force balance:

Vp=ixB=j xB, {1 xB)

p' =% -

dw
j=—(Rp'+FF/(p,R))
wely =—F'By , F(¥)=RB,

In cylindrical approximation :

d

B2 J, :_<Ro p'+ FF'/ (Ho RO))
el — 0
dr

N . dB
o Holo = — er

B +B;

p+
2,
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Plasma magnetization of a “cylindrical” tokamak D."?‘.;‘;g:{:-"

Integrating cylindrical force balance:

'pdS BL—(B) 2B, (B,—(B, dB .
_];/2;/2 - 2< >21+ ( 2 < >> = ~Holy
fa I*LO Bea Bea dl‘

By

(Bg -1) is related to normalised average plasma magnetisation B, |

— | N
\—/
By <1 B, increased by j,
paramagnetism, B,
low pressure CD T
Vp < . XBy
"
B> 1 B, reduced by j,

diamagnetism, B,

-

-

Vp > 1 X f}e high pressure
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MAGNETS O

The tokamak plasma is a magnet.

(B,)— B} =y, [Bﬁa / 2, — ]; apdS] / B,

the difference between poloidal magnetic and kinetic pressure
determines if it is a para-magnet or a dia-magnet

Paramagnets
increase the background magnetic field
move towards high field regions

Diamagnets
decrease the background magnetic field
move towards low field regions

so far | have just reviewed well known facts
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Diamagnetic levitation OI‘?‘.E‘;{:-‘.;”"

A frog (diamagnetic) dropped in a
strong magnetic field levitates because
it tries to get away from the high field.
It moves towards the lower field,
arranged to be upwards.

A
coil 1
e NN\
19 E\ g
N \§ i MV Berry and AK Geimz
0 mm Eur. J. Phys. 18 (1997) 307-313.
<N
<—150 mm——>¢
A2
< 410 mm >
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The poloidal current density around a |- ‘
tokamak plasma is responsible for ‘s para N
plasma magnetisation: the difference # |
between the externally applied toroidal L dia
. : : C Kinetic ~
field and the local toroidal field inside Pressure \
the plasma Contours ;
""" . 2y
......... Next consider a field-

aligned plasma element
with a pressure
perturbation relative to
the background plasma
pressure.

Not conventional current
filaments” with What is its

parallel current density magnetisation?
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Magnetism in cylindrical tube with pressure hill/hole OHE’J{I’.E"”'

B dv e = bxVp
Fp:mn dtp :—Vpp—I—(JXB>p ]J_—T

Diamagnetic current:

if inside the tube there is a pressure hill (more pressure
than in the background plasma), the associated

P perpendicular current reduces B,: diamagnetism

o
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Magnetism in cylindrical tube with pressure hill/hole OHE‘J{FE“"

B oAy, s . bxVp
Fp — mn dt __vpp_|_(J><B)p JL = 5
M p Diamagnetic current:

if inside the tube there is a pressure hill, the associated
perpendicular current reduces B,: diamagnetism

Paramagnetic current:

if inside the tube there is a pressure hole (less pressure
M than in the background plasma), the associated
perpendicular current increases B,: paramagnetism

o
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Magnetism in cylindrical tube with pressure hill/hole OHEE{F.E”"

B de L ~ o ~ _bXVﬁ
l K, = __vpp_|_(J><B)p 1. = B

P dt

M p Diamagnetic current:

if inside the tube there is a pressure hill, the associated
perpendicular current reduces B,: diamagnetism

Paramagnetic current:
if inside the tube there is a pressure hole, the associated
M perpendicular current increases B,: paramagnetism

t

Magnetization of the blob:

VXM =, 6XVp _ —d—Mf'
B dr ;
» b (‘9p(p) p <0, dia
= f B 8 ” %—:b <
P >0, para

S
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Movement of magnetized object in field gradient thf:j;:::,'::.“”

Fusian
(see Jackson)

A " dv
Bzo ‘ BzO v dt

2

= f (V(M.B))dV

»

K

\Y

— —

\\f f:( [ (rxj)dv) [vB,,dv
\\ J

&

-
AN T~ blob magnetization
% K -\r dv. ~ = -
- mnV d = MZVBZO — _“’OMZ JO
M, 4 t
— the cold tube (paramagnetic) seeks high field

—» the hot tube (diamagnetic) seeks low field

averaged dB./dr controls motion of magnetised plasma tubes:
Anti-potential leads to magnetic phase separation
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Paramagnetic plasma: L-mode O;‘r{;gi';;gw

p(r)
Motion of pressure blobs depends on dB_/dr
d - dB
mn,, PN Mc S
<— dt dr
r paramagnetic cold blobs move inward,
= diamagnetic hot blobs move outward

p(r)

outward thermal energy convection
at the expense of
inward magnetic energy convection

[E 11

r p blobs “grow”, “instability”

B,(r)

Paramagnetism L-mode
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Diamagnetic plasma: H-mode O{tﬁgm:-ﬂ

p(r)
Motion of pressure blobs depends on dB_/dr
<— d . dB
mn,, PN Mc -0
dt dr
diamagnetic hot blobs move inward,
' paramagnetic cold blobs move outward
p(r)

inward thermal energy convection
at the expense of
— outward magnetic energy convection

LE N 11

B,(r) diamagnetism — r p blobs “decrease”, “saturation

/ H-mode
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Magnetic Boundary: phase transition D{‘j{;;i'ggml

p(r

Vp increases somewhere,
creating diamagnetic region
at plasma edge.

B,(r)
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Magnetic Boundary: phase transition Ol-mmn

p(r)
—>
l < At a magnetic phase boundary blobs
of the same type accumulate
diamagnetic blobs (heat) seek wells
B
A" ' paramagnetic blobs seek hilltops
< =
\O\/O/ With multiple blobs moving,
I I p and B, profiles evolve

Emilia R. Solano
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Magnetic Boundary: phase transition D{‘j{;;i'mn'

Pressure gradient
increases in diamagnetic region
Decreases in paramagnetic region

Magnetization,
of both signs, increases.

Phase transition is self-reinforcing.

Pressure pedestal forms, grows.
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Evolution equations Df?‘.ilf{ii;”"'

Ideal 1 fluid MHD evolution magnetization force terms
dv A 7 VI
nm, E:F vit 't v “dr
30p 30p d .
=—-V.Q+H . =——(pV
2 ot Q 2 ot " dr ®v.)
OB OB
— =Vx(vxB)=Vxn(j—j.) ., | =Vx(v,B,0)
8t 6t T V4
M

For now, consider what the magnetisation force does,
disregard other transport mechanisms
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Pedestal formation at magnetisation boundary D."?‘.;::g:-*,g*-”

Assume dashed B,(r), p(r) initial profiles

Ideal MHD with magnetization force

n,m, av, = 1\~/IQ iEOZ
dt |, dr
30 d .
S = ——(V,)
2 Oty dr
aBz — i({]rEOZ)
ot |, dr

Integrating one temporal step At

pressure steepens in diamagnetic regions,
increases diamagnetism

flattens in paramagnetic regions,
increases paramagnetism

Magnetic phase separation drives pedestal formation
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« plasma tubes with an excess or defect of pressure are convected
radially, depending on the plasma magnetisation.

* phase separation occurs at the flux surface in which j, changes sign.

Under what conditions?

» The seed pressure perturbation is strong enough to protrude above or
below the background pressure profile.

« plasma elements must be long enough to average out the 1/R variation
of the vacuum field: A> qR. Otherwise conventional, ballooning-like
transport would drive short diamagnets towards low R.

» Collisionality/resistivity: the temperature must be high enough for
particles to sample LFS and HFS before being scattered out of the
tube.

 Edge pressure must be high enough to allow negative perturbations
as well as positive.
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e So far we have treated the plasma tubes as “test particles” with a
magnetic moment

e ignored geometrical magnetisation from I
e No evolution equation for tube magnetisation.

e the magnetic interaction between plasma elements and bulk plasma is
qguite complex, and our model very simple (too simple?)

e We hope that a more detailed calculation, up to second order on the
spatial variation of F=RB,,,, can be carried out. Kind of neoclassical
magnetisation, instead of classical

e Much harderto do ...
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 present when a radial force acts equally on electrons and ions
 equivalent to the Rayleigh-Taylor instability in a fluid.

* magnetization gradient acting on magnetized plasma blobs replace
“gravitational field” or “curvature”.

Magnetization interchange

light fluid = |1 pdB 1
Prnbilor B dr }\"p

Magnetization interchange growth faster for
high magnetisation, strong seed, low field & mass

M.N. Rosenbluth and C.L. Longmire, Annals of Physics, Volume 1, Issue 2, May 1957,120
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Suydam criterion for interchange instability OH?IT?I;::::F"
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B. R. Suydam, Proc. 2nd UN Conf. on Peaceful Uses of Atomic Energy, Geneva, 1958.

’ magnetic shear opposes interchange of tubes

Rq Q'2 _ .
> 4q2 driven by cylindrical curvature and V(3

I

S

B’k
Ko

B'

Generalization:
add magnetization force to cylindrical curvature

2 2

q
> -
4q2

Rq
I

S

B’k v dB,,
o dr

B'

dB,, <0

dr
magnetisation force adds to curvature, instability,

In magnetically mixed states M_

until the magnetic shear q’ or the variation of dB,/dr changes.
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As heating is applied, low pressure paramagnetic plasmas have
degraded confinement, driven by low Vp

When sufficient heating is applied, Vp grows until zero magnetization is
obtained somewhere inside the plasma: J, =0

R
o*
.
o
o
o
.
o

Estimate critical pressure gradient as

dp .
L _ B =E

B
dr !

loop T] Spitzer

Need database of typical Vp, loop voltage, resistivity and B,

to test predictions
or measurements of j,

Explaining T, threshold for L-H transition via ngi,er 7
and associated pressure gradient () threshold
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Experimental evidence? AUG Dmﬁg}nmr

H 28847
0.8 - '\----‘L——J\—n—JL.--JLJ\_...__—J\-.....--J‘..;,-._-...——IL._._....——-o\._.——h-...---—-!\_..{._-
0.6 . | ll
: L-H@t=08s W’ |
| I |
\ \ I wotwvied | A
1.1 1.2

P. J. McCarthy, P4.115, 40th EPS Conference
on Plasma Physics, Espoo, 2013

o —tem 3 7 -11 15
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In a slow L-H transition followed by “type IlII” ELMs
Jo remains diamagnetic after transition

1.0

: e m%
0.6—A et Dl

: Bpol P
0.4

But at least one counter example has been found in a slow transition (still
unpublished). More analysis needed, as well as more refined model.
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» First-principles model of plasma magnetization and magnetic phase transition

as the basis for triggering confinement transitions

» The magnetic state of the plasma determines convective motion of high and

low pressure tubes.
« Paramagnetic plasma regions attract cold tubes, become more paramagnetic.
« Diamagnetic plasma regions attract hot tubes, becoming more diamagnetic.
« A pedestal structure builds up in the magnetic phase boundary.
+ Magnetic boundary defines critical magnetization: j, = 0 <= Vp = j. X B,

» Magnetization force drives the magnetic interchange mechanism in closed

field line region, similar to curvature interchange in SOL.
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